Synchronisation with group interactions

Maxime Lucas CENTAI Institute, Turin (Italy) maximelca

31st August 2022

IPAM22, Los Angeles

Work done with G. Cencetti, Y. Zang, and F. Battiston

But.. networks don't encode group interactions

But.. networks don't encode group interactions

3 papers by 2 authors each 1 paper by 3 authors

Examples

co-authorship networks

(A. Patania et al., 2017)

chemical reactions

(F. Klimm et al., 2020)

 neuron receiving multiple synaptic inputs

(Tanaka et al., 2011)

 social dynamics (lacopini et al., 2019)

· ...

Examples

co-authorship networks

(A. Patania et al., 2017)

chemical reactions

(F. Klimm et al., 2020)

 neuron receiving multiple synaptic inputs

(Tanaka et al., 2011)

 social dynamics (lacopini et al., 2019)

. . . .

See our big Phys. Rep. review (Battiston et al., 2020). I was the main responsible for the section on synchronisation.

doi.org/10.1016/j.physrep.2020.05.004

Group interactions in sync?

Group interactions can be structural..

or naturally appear from phase reduction .:

$$\dot{\mathbf{x}}_i = F(\mathbf{x}) + \epsilon \sum_j \sin(\mathbf{x}_j - \mathbf{x}_i)$$

becomes

$$\dot{ heta}_i = f(heta_i) + \epsilon \sum_j \sin(heta_j - heta_i) + \epsilon^2 \sin(heta_k + heta_j - 2 heta_i) + ...$$

e.g. Leon and Pazo 2019, Gengel et al. 2020

Group interaction can change the dynamics

Group interactions

. . .

- can cause explosive sync (Skardal and Arenas, 2019)
- favour chaos (Bick et al., 2016)
- favour clusters (Tanaka, 2011)
- can be infered from data (Kralemann et al., 2011)

Now: what we did

1. Part 1: Model and the Multiorder Laplacian

Part 1: Model and the Multiorder Laplacian
 Part 2: Do group interactions promote sync?

Part 1: Model and the Multiorder Laplacian
 Part 2: Do group interactions promote sync?

♥ Interrupt me with questions!

Part 1: The multiorder Laplacian

In traditional pairwise networks, the Laplacian is a **linear operator** typically used to study full sync.

In traditional pairwise networks, the Laplacian is a **linear operator** typically used to study full sync.

How? Its **eigenvalues** determine the stability of the sync state. (related to Lyapunov exponents.)

In traditional pairwise networks, the Laplacian is a **linear operator** typically used to study full sync.

How? Its **eigenvalues** determine the stability of the sync state. (related to Lyapunov exponents.)

We extended the traditional Laplacian to include group interactions \rightarrow multiorder Laplacian.

Pairwise Kuramoto model:

$$\dot{ heta}_i = \omega + rac{\gamma_1}{\langle \mathcal{K}^{(1)}
angle} \sum_{j=1}^N A_{ij} \sin(heta_j - heta_i)$$

Sync is a solution: $\theta_i(t) = \theta_j(t)$ gives us $\theta(t) = \omega t + cst$.

Is it linearly stable? Evolution of an infinitesimal and heterogeneous perturbation around it, $\delta \psi_i(t)$.

$$\delta \dot{\psi}_i = -\sum_{j=1}^N \frac{\gamma_1}{\langle \mathcal{K}^{(1)} \rangle} L_{ij}^{(1)} \delta \psi_j.$$

with the pairwise Laplacian

$$L_{ij}^{(1)} = K_i \delta_{ij} - A_{ij}$$

Its eigenvalues determine if sync is stable. In particular:

$$\lambda_2 < 0$$
 means stable

Let's start business

The model

Natural generalisation of the Kuramoto model, with **all possible** orders d = 1, ..., D and complex structure:

$$\begin{split} \dot{\theta}_{i} &= \omega + \frac{\gamma_{1}}{\langle K^{(1)} \rangle} \sum_{j=1}^{N} A_{ij} \sin(\theta_{j} - \theta_{i}) \\ &+ \frac{\gamma_{2}}{2! \langle K^{(2)} \rangle} \sum_{j,k=1}^{N} B_{ijk} \sin(\theta_{j} + \theta_{k} - 2\theta_{i}) \\ &+ \frac{\gamma_{3}}{3! \langle K^{(3)} \rangle} \sum_{j,k,l=1}^{N} C_{ijkl} \sin(\theta_{j} + \theta_{k} + \theta_{l} - 3\theta_{i}) \\ &+ \dots \\ &+ \frac{\gamma_{D}}{D! \langle K^{(D)} \rangle} \sum_{j_{1},\dots,j_{D}=1}^{N} M_{ij_{1},\dots,j_{D}} \sin\left(\sum_{m=1}^{D} \theta_{j_{m}} - D \theta_{i}\right) \end{split}$$

where D can be at most N - 1 (interaction of N oscillators).

Is sync it linearly stable?

Is sync it linearly stable?

Introducing the **multi-order Laplacian** $L_{ij}^{(mul)}$, it naturally reduces to just this!

$$\dot{\delta\psi_i} = -\sum_{j=1}^N L_{ij}^{(\mathrm{mul})} \delta\psi_j.$$

Stability is only determined by the eigenvalues of this matrix $L_{ij}^{(mul)}$.

Multi-order Laplacian: combine all orders

Multi-order Laplacian: weighted sum of Laplacians of order d

$$L_{ij}^{(\text{mul})} = \frac{\gamma_1}{\langle \mathcal{K}^{(1)} \rangle} L_{ij}^{(1)} + \frac{\gamma_2}{\langle \mathcal{K}^{(2)} \rangle} L_{ij}^{(2)} + \dots + \frac{\gamma_D}{\langle \mathcal{K}^{(D)} \rangle} L_{ij}^{(D)}$$

Multi-order Laplacian: combine all orders

Multi-order Laplacian: weighted sum of Laplacians of order d

$$L_{ij}^{(\text{mul})} = \frac{\gamma_1}{\langle \mathcal{K}^{(1)} \rangle} L_{ij}^{(1)} + \frac{\gamma_2}{\langle \mathcal{K}^{(2)} \rangle} L_{ij}^{(2)} + \dots + \frac{\gamma_D}{\langle \mathcal{K}^{(D)} \rangle} L_{ij}^{(D)}$$

Laplacian of order *d***:** natural generalisation of traditional Laplacian

$$L_{ij}^{(d)} = \boldsymbol{d} K_i^{(d)} \delta_{ij} - A_{ij}^{(d)}$$

with, at each order d:

Degree
$$K_i^{(d)} = \# d$$
-simplices incl. *i*
Adjacency $A_{ij}^{(d)} = \# d$ -simplices incl. (i, j)

Ok, let's look at examples

All-to-all at all orders \rightarrow analytical Lyapunov spectrum

- the larger the order, the "stronger" the interaction: $\lambda_2^{(d)} \propto -d$

All-to-all at all orders \rightarrow analytical Lyapunov spectrum

- the larger the order, the "stronger" the interaction: $\lambda_2^{(d)} \propto -d$
- including higher orders makes sync more stable

The multi-order Laplacian can be used to compute the stability of synchronisation in real datasets:

• The model: phase oscillators with group interactions

- The model: phase oscillators with group interactions
- The framework: we **generalised the pairwise Laplacian** to account for group interactions **of any size**

- The model: phase oscillators with group interactions
- The framework: we **generalised the pairwise Laplacian** to account for group interactions **of any size**
- Group interactions affect structure and hence influence the stability of sync
- Group interactions seem to make sync more stable

Case study 2: do group interactions promote sync?

1. Do group interactions promote sync?

examples found in previous studies. physically plausible: information travels faster

2. Does the choice of representation matter?

hypergraphs or simplicial complexes: no big difference in previous studies

Representation: hypergraphs or simplicial complexes

hypergraph

most general

just a list of hyperedges (set of nodes)

e.g.: [[1,2], [2,3], [3,4], [2, 4, 5]]

simplicial complex

hypergraph with inclusion condition add [[2, 4], [4, 5], [2,5]] to close the triangle

So far, choice often based on technical convenience.

Battiston et al., 2020

Let's use the multiorder Laplacian

Model: constrained total coupling

Same model, with size up to 2

$$\dot{ heta}_i = \omega + rac{\gamma_1}{\langle k^{(1)} \rangle} \sum_{j=1}^n A_{ij} \sin(heta_j - heta_i)
onumber \ + rac{\gamma_2}{2! \langle k^{(2)}
angle} \sum_{j,k=1}^n B_{ijk} rac{1}{2} \sin(heta_j + heta_k - 2 heta_i)$$

Model: constrained total coupling

Same model, with size up to 2

$$\begin{split} \dot{\theta}_i &= \omega + \frac{\gamma_1}{\langle k^{(1)} \rangle} \sum_{j=1}^n A_{ij} \sin(\theta_j - \theta_i) \\ &+ \frac{\gamma_2}{2! \langle k^{(2)} \rangle} \sum_{j,k=1}^n B_{ijk} \frac{1}{2} \sin(\theta_j + \theta_k - 2\theta_i) \end{split}$$

with the constraint

$$\gamma_1 = 1 - \alpha$$
 $\gamma_2 = \alpha$ $\alpha \in [0, 1]$

Model: constrained total coupling

Same model, with size up to 2

$$\dot{ heta}_i = \omega + rac{\gamma_1}{\langle k^{(1)} \rangle} \sum_{j=1}^n A_{ij} \sin(heta_j - heta_i)
onumber \ + rac{\gamma_2}{2! \langle k^{(2)}
angle} \sum_{j,k=1}^n B_{ijk} rac{1}{2} \sin(heta_j + heta_k - 2 heta_i)$$

with the constraint

$$\gamma_1 = 1 - \alpha \qquad \gamma_2 = \alpha \qquad \alpha \in [0, 1]$$

Zhang, Lucas and Battiston, 2022

Fixing the total coupling: compare edges and triangles fairly

Simplicial complexes impede sync...

... but random hypergraphs improve it!

For some parameters, optimum is mixed

p: probability of linking two nodes

In pairwise (-) networks, we know:

degree heterogeneity $\nearrow \ \ \rightarrow \ \ \,$ sync stability \searrow

In pairwise (-) networks, we know:

degree heterogeneity $\nearrow \rightarrow$ sync stability \searrow

With triangles (\blacktriangle), we showed:

degree heterogeneity $(\blacktriangle) >$ degree heterogeneity (-)

In pairwise (-) networks, we know:

degree heterogeneity $\nearrow \ \ \rightarrow \ \ \,$ sync stability \searrow

With triangles (\blacktriangle), we showed:

degree heterogeneity (\blacktriangle) > degree heterogeneity (-)

So that

 \blacktriangle strength \nearrow \rightarrow tot. deg. heterogen. \nearrow \rightarrow sync stability \searrow

- Group interactions improve sync in random hypergraphs but impede it in simplicial complexes
- Choice of representation affects degree heterogeneity
- The choice of representation is important!

Python library: XGI

compleX Group Interactions: provides data structures and algorithms for modeling and analyzing complex systems with group (higher-order) interactions.

- Github: https://github.com/ComplexGroupInteractions/xgi
- Docs: https://xgi.readthedocs.io/
- Tutorials: https://github.com/ComplexGroupInteractions/ xgi/tree/main/tutorials

- Group interactions can change the dynamics
- The multiorder Laplacian is a extension of the traditional Laplacian
- Group interactions do not always promote sync
- The choice of representation actually matters

Broadening the discussion

The analytical tools are different:

e.g., we cannot use the Hodge Laplacian.

Less datasets with direct measurements of group interactions than pairwise

- https://github.com/ComplexGroupInteractions/xgi-data
- https://www.cs.cornell.edu/ arb/data/

Inferring from node time series or pairwise interactions

- Reconstructing phase dynamics of oscillator networks, Kralemann et al., 2011
- Principled inference of hyperedges and overlapping communities in hypergraphs, Contisciani et al., 2022
- Hypergraph reconstruction from network data, Young et al., 2021

- Comparing these models with actual structure and dynamics from experiments?
- Influence of coupling functions?

Giulia Cencetti

Yuanzhao Zhang

Fede Battiston

Thank you for your attention!

Any questions?

ml.maximelucas@gmail.com

♥ maximelca

- Networks beyond pairwise interactions: structure and dynamics. Battiston F. et al., 2020. Phys. Rep., 874.
- Multiorder Laplacian for synchronization in higher-order networks. Lucas M., Cencetti G. and Battiston F., 2020. *Phys. Rev. Res.*, 2(3), p.033410.
- Do higher-order interactions promote synchronization? Zhang Y.*, Lucas M.* and Battiston F., 2022. arXiv:2203.03060.