Inferring cell cycle phases from a temporal network of protein interactions

Maxime LUCAS

10th July 2021

Networks2021 maximelca Aix-Marseille University

work with A. Barrat, B. Habermann, L. Tichit, A. Morris, and A. Towsend-Teague bioRxiv:2021.03.26.437187

Temporal structure \leftrightarrow biological behaviour

Temporal structure \leftrightarrow biological behaviour

active protein interactions expressed genes

A computational method, Phasik, to infer the temporal organisation of biological systems, over multiple temporal scales.

Goal : help biologist understand their system and design experiments better

A computational method, Phasik, to infer the temporal organisation of biological systems, over multiple temporal scales.

Goal : help biologist understand their system and design experiments better

To validate our method: the **cell cycle**, because it is so well known.

Cell cycle: protein interactions that change over time

... leading to the cell division.

Multiple relevant timescales:

- Macro: 4 physiological phases (G1, S, G2, M)
- Meso: physiological subprocesses
- Micro: protein interactions that change over time

Time-ordering ensured by molecular checkpoints.

Cell cycle: protein interactions that change over time

... leading to the cell division.

Multiple relevant timescales:

- Macro: 4 physiological phases (G1, S, G2, M)
- Meso: physiological subprocesses
- Micro: protein interactions that change over time

Time-ordering ensured by molecular checkpoints.

We focus on **budding yeast** because it is best known.

Can we predict the phases from the temporal protein interactions?

Static network of protein interactions represents the cell cycle

84 nodes (proteins) connected by 159 edges (protein interactions).

All temporal information is lost!

Interaction data: KEGG.

All temporal information is lost.. we need temporal networks

The edges are now time-varying.

At each time corresponds a **snapshot** of the temporal network

Phasik: 1. build a temporal network

Build temporal network by integrating time series

Inject time series data into the static network

Temporal data needed: mathematical model or RNA-seq. Our network is **partially temporal** (34/159 edges).

Temporal data: Chen 2014 and Kelliher 2016.

Phasik: 2. infer biological phases

Idea: the temporal network stays similar when it stays in the same "state" or phase, but changes a lot when it changes phase (Masuda and Holme, 2019).

Idea: the temporal network stays similar when it stays in the same "state" or phase, but changes a lot when it changes phase (Masuda and Holme, 2019).

Results

Distance matrix:

Multiple scales are relevant

Quality of clusterings (average silhouette) is constant across scales

Is the method, Phasik, robust?

Phasik and its results are robust against:

- changes in clustering method
- changes in distance metric
- measurement noise in time series
- downsampling of time series

How little temporal information do we need?

Original: 34 / 159 edges with temporal information

Imagine we have access to only CDC28's interactions

Original: 34 / 159 edges with temporal information

Now: 8 / 159 edges with temporal information

Edges with no temporal information are shown in grey.

Can Phasik detect modified phases in mutants?

Mutant phases: G1 arrest in \triangle CLN1/2/3

Phasik can be used with gene expression data too!

Can the method be used on other biological systems? Yes!

Flight muscle development in Drosophila

Flight muscles (blue) have densely packed, cristae-rich mitochondria

RNA-seq measurement of the genes at each time.

Flight muscle development in Drosophila

We have 8 time points between 0 and 100 hours.

All you need is:

- time series data about biological units (e.g. proteins/genes/..) or their interactions
- interaction data (e.g. static PPI network)

Use our code on your data!

Phasik

- Our user-friendly code is available online: https://gitlab.com/habermann_lab/phasik
- Functions for each step of the pipeline: temporal networks building, and phase inference.
- Online documentation:

https://phasik.readthedocs.io/en/latest/

• Available as a **Python package**. **Install it** in the terminal: pip install phasik

- We represented the **cell cycle** as a **temporal network** of protein interactions
- From that, we **inferred biological phases** of the cell cycle by clustering snapshots
- We investigated **how much**, and what, **temporal data** is necessary.
- We applied the method to cell cycle mutants and flight muscle development in *Drosophila*

Next steps: Apply this method to other less well-known biological systems. Let us know about yours!

Thanks to the people I work with: Alain Barrat, Bianca Habermann, Laurent Tichit, and everyone in their teams!

maxime lucas 1@univ-amu fr

👻 maximelca

Any questions?

