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Recap last lecture

Types of networks Concepts Properties

Un/directed
Weighted 
Bipartite

Degree
Weights

Adjacency matrix
Paths/components

Clustering coefficient
Centralities

Scale-free
Sparseness

Connectedness
Small-worldness
High clustering



Erdös-Rényi model (1960)

Connect with probability p

p=1/6  N=10 

<k> ~ 1.5

Pál Erdös
(1913-1996)

Alfréd Rényi
(1921-1970)

RANDOM NETWORK MODELToday’s topic: Random models

What? Ensembles of networks with constraints
but otherwise maximally random

Why? They help us understand 
what is structure

and what is random



Erdös-Rényi model (1960)

Connect with probability p

p=1/6  N=10 

<k> ~ 1.5

Pál Erdös
(1913-1996)

Alfréd Rényi
(1921-1970)

RANDOM NETWORK MODEL

Erdos-Renyi random network modelRANDOM NETWORK MODEL

Network Science: Random 

Definition:

A random graph is a graph of N nodes where each pair 
of nodes is connected by probability p.

4

THE RANDOM
NETWORK MODEL

SECTION 3.2

Network science aims to build models that reproduce the properties of 
real networks. Most networks we encounter do not have the comforting 
regularity of a crystal lattice or the predictable radial architecture of a spi-
der web. Rather, at first inspection they look as if they were spun randomly 
(Figure 2.4). Random network theory embraces this apparent randomness 
by constructing networks that are truly random. 

From a modeling perspective a network is a relatively simple object, 
consisting of only nodes and links. The real challenge, however, is to decide 
where to place the links between the nodes so that we reproduce the com-
plexity of a real system. In this respect the philosophy behind a random 
network is simple:  We assume that this goal is best achieved by placing 
the links randomly between the nodes. That takes us to the definition of a 
random network (BOX 3.1):

A random network consists of N nodes where each node pair is connect-
ed with probability p. 

To construct a random network we follow these steps:  

1) Start with N isolated nodes.

2) Select a node pair and generate a random number between 0 and 1. 
If the number exceeds p, connect the selected node pair with a link, 
otherwise leave them disconnected.

3) Repeat step (2) for each of the N(N-1)/2 node pairs.

The network obtained after this procedure is called a random graph or 
a random network. Two mathematicians, Pál ErdĘs and Alfréd Rényi, have 
played an important role in understanding the properties of these net-
works. In their honor a random network is called the ErdĘs-Rényi network 
(BOX 3.2).

RANDOM NETWORKS

BOX 3.1
DEFINING RANDOM NETWORKS

There are two equivalent defini-
tions of a random network:

G(N, L) Model

N labeled nodes are connect-
ed with L randomly placed 
links. ErdĘs and Rényi used 
this definition in their string 
of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes 
is connected  with probability 
p, a model introduced by Gil-
bert [10].

Hence, the G(N, p) model fixes 
the probability p that two nodes 
are connected and the G(N, L) 
model fixes the total number 
of links L.  While in the G(N, L) 
model the average degree of a 
node is simply <k> = 2L/N, oth-
er network characteristics are 
easier to calculate in the G(N, p) 
model. Throughout this book we 
will explore the G(N, p) model, 
not only for the ease that it al-
lows us to calculate key network 
characteristics, but also because 
in real networks the number of 
links is rarely fixed. 

RANDOM NETWORK MODEL: THE NUMBER OF LINKS IS VARIABLE

p=1/6
N=12

L=8 L=10 L=7
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Hence <L>  is the product of the probability p that two nodes are con-
nected and the number of pairs we attempt to connect, which is Lmax = N(N 
- 1)/2 (CHAPTER 2). 

Using (3.2) we obtain the average degree of a random network

Hence <k> is the product of the probability p that two nodes are con-
nected and (N-1), which is the maximum number of links a node can have 
in a network of size N.

In summary the number of links in a random network varies between 
realizations. Its expected value is determined by N and p. If we increase p 
a random network becomes denser: The average number of links increase 
linearly from <L> = 0 to Lmax and the average degree of a node increases 
from <k> = 0  to <k> = N-1.

Top Row
Three realizations of a random network gen-
erated with the same parameters p =1/6 and N 
= 12. Despite the identical parameters, the net-
works not only look different, but they have a 
different number of links as well (L  = 8, 10, 7). 

Bottom Row
Three realizations of a random network with p  
= 1/6 and N = 100.

Figure 3.3
Random Networks are Truly Random

RANDOM NETWORKS
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THE NUMBER OF LINKS IS VARIABLE

N = 12

p = 1/6



Erdos-Renyi random network model
Probability of a network in the ensemble

P(L) =
(N

2 )
L

pL(1 − p)
N(N − 1)

2 L

probability to have exactly L links in a network of N nodes and probability p 

The maximum number of links 
in a network of N nodes. 

Number of different ways we can 
choose L links among all potential links. 



P(x) = (T
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Erdos-Renyi random network model
Average degree
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< k >= 2L/N = p(N � 1)

Average degree

We are constraining the average degree!
So if we want SPARSENESS, we need small p
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Erdos-Renyi random network model
Degree distribution

DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 
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DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 
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Erdos-Renyi random network model

p(k) = e−<k> < k >k

k!

Poisson limit of degree distribution
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Dispersion controlled by <k> or p



FACING REALITY: Degree distribution of real networks

� 

P(k) = e−<k> < k >k

k!

Erdos-Renyi random network model
And nope.. ER does not reproduce realistic degree distributions

Dashed line: Poisson with <k> computed from data



Erdos-Renyi random network model
List of results:

- we can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw



Erdos-Renyi random network model
What about clustering?

Ci =
2Li

ki(ki − 1)

Probability?

Ci = p =
< k >

N
We CAN constrain the clustering (but uniform)! 

So if we want high clustering, we need large p!

We are constraining the average degree!
So if we want SPARSENESS, we need small p

⟨Li⟩ = p
ki(ki − 1)

2



Erdos-Renyi random network model
List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
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C decreases with the system size N.

C is independent of a node�s degree k.

Network Science: Random Graphs 

CLUSTERING COEFFICIENT
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CLUSTERING COEFFICIENT
SECTION 3.9

The degree of a node contains no information about the relationship 
between a node's neighbors. Do they all know each other, by having links 
between them? Or are they perhaps isolated from each other? The answer 
is provided by the local clustering coefficient Ci, that measures the density 
of links in node i’s immediate neighborhood: C = 0 means that there are no 
links between i’s neighbors; C = 1 implies that each of the i’s neighbors link 
to each other (SECTION 2.10). 

To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
            
     

Equation (3.21) makes two predictions:

(1)  For fixed <k>, the larger the network, the smaller is a node’s cluster-
ing coefficient. Consequently a node's local clustering coefficient Ci 
is expected to decrease as  1/N. Note that the network's average clus-
tering coefficient, <C> also follows (3.21).

 
(2) The local clustering coefficient of a node is independent of the node’s 

degree.

To test the validity of (3.21) we plot <C>/<k> in function of N for several 
undirected networks (Figure 3.13a). We find that <C>/<k> does not decrease 

RANDOM NETWORKS

(3.21)

L p
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(3.20)
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as N-1, but it is largely independent of N, in violation of the prediction (3.21)
and point (1) above. In Figure 3.13b-d we also show the dependency of C on 
the node’s degree ki for three real networks, finding that C(k) systematical-
ly decreases with the degree, again in violation of (3.21) and point (1). 

In summary, we find that the random network model does not capture 
the clustering of real networks. Instead real networks have a much high-
er clustering coefficient than expected for a random network of similar 
N and L. An extension of the random network model proposed by Watts 
and Strogatz [26] addresses the coexistence of high C and the small world 
property (BOX 3.8). It fails to explain, however, why high-degree nodes have 
a smaller clustering coefficient than low-degree nodes. Models explaining 
the shape of C(k) are discussed in Chapter 9.

RANDOM NETWORKS CLUSTERING COEFFICIENT

(a) Comparing the average clustering co-
efficient of real networks with the 
prediction (3.21) for random networks. 
The circles and their colors correspond 
to the networks of Table 3.2. Directed 
network were made undirected to cal-
culate C and <k>. The green line cor-
responds to (3.21), predicting that for 
random networks the average cluster-
ing coefficient decreases as N-1. In con-
trast, for real networks <C> appears to 
be independent of N.

(b)-(d)  The dependence of the local clustering 
coefficient, C(k), on the node’s degree 
for (b) the Internet, (c) science collabo-
ration network and (d) protein interac-
tion network. C(k) is measured by av-
eraging the local clustering coefficient 
of all nodes with the same degree k. 
The green horizontal line corresponds 
to <C>. 

Figure 3.13

Clustering in Real Networks

InternetAll Networks

Protein InteractionsScience Collaboration

(a)

(c)

(b)

(d)

C seems independent of N

Green curve is <C>
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Erdos-Renyi random network model
What about connectedness? Let’s guess a criterion!

< kc > = 1
Erdos and Renyi, 1959

Necessary!  Ok.. but sufficient? 

u = 1 −
NGC

N
GC

i j

i ∉ GC

1) i ≁ j ∈ GC → (1 − p)
2) i ∼ j ∉ GC → (pu)

Probability that i is not in GC?
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.17). While (3.32) looks simple, it does not have a closed solu-
tion. We can solve it graphically by plotting  the right hand side of (3.32) as 
a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when

Setting S = 0, we obtain that the phase transition point is at <k> = 1 (see 
also ADVANCED TOPICS 3.F).

RANDOM NETWORKS ADVANCED TOPICS 3.C
GIANT COMPONENT

(3.32)

(3.33)

S e = 1 .k S− −〈 〉

d
dS

e1 1,k S( )− =−〈 〉

k e 1.k S〈 〉 =−〈 〉

(a) The three purple curves correspond to y = 
1-exp[ -<k> S ] for <k>=0.5, 1, 1.5. The green 
dashed diagonal corresponds y = S, and 
the intersection of the dashed and purple 
curves provides the solution to (3.32). For 
<k>=0.5 there is only one intersection at  S 
= 0, indicating the absence of a giant com-
ponent. The <k>=1.5 curve has a solution 
at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [31].

Figure 3.17

Graphical Solution 
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.17). While (3.32) looks simple, it does not have a closed solu-
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a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when
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= 0, indicating the absence of a giant com-
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at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [31].
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.17). While (3.32) looks simple, it does not have a closed solu-
tion. We can solve it graphically by plotting  the right hand side of (3.32) as 
a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when

Setting S = 0, we obtain that the phase transition point is at <k> = 1 (see 
also ADVANCED TOPICS 3.F).

RANDOM NETWORKS ADVANCED TOPICS 3.C
GIANT COMPONENT

(3.32)

(3.33)

S e = 1 .k S− −〈 〉

d
dS

e1 1,k S( )− =−〈 〉

k e 1.k S〈 〉 =−〈 〉

(a) The three purple curves correspond to y = 
1-exp[ -<k> S ] for <k>=0.5, 1, 1.5. The green 
dashed diagonal corresponds y = S, and 
the intersection of the dashed and purple 
curves provides the solution to (3.32). For 
<k>=0.5 there is only one intersection at  S 
= 0, indicating the absence of a giant com-
ponent. The <k>=1.5 curve has a solution 
at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [31].

Figure 3.17

Graphical Solution 
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it does not have a closed solution. We can 
solve it graphically by plotting the right 
hand side of (3.32) as y a function of S for 
various values of <k>

the phase transition point is when the r.h.s. of (3.32) has the same 
derivative as the l.h.s. of (3.32), i.e. when  d/dS(1 −eˆ-�k�S) = 1. Setting 
S = 0, we obtain that the phase transition point is at <k> = 1 

What about connectedness? Let’s guess a criterion!

Erdos-Renyi random network model

(1 − p + pu)N−1 = u NGC = N(1 − u) p =
< k >
N − 1

→ (N − 1)ln [1 −
< k >
N − 1

(1 − u)] = ln u

→ − < k > (1 − u) ≈ ln u → u ∼ e−<k>(1−u), S = NGC /N = 1 − u → S = 1 − e−<k>S

Derive both sides!

1 = [ d
dS

(1 − e−<k>S)]
S=0

< k > = 1

Does not have a closed solution: let’s solve graphically

<k> << N



Phase transitions in complex systems I: Magnetism

Phase transitions in complex systems I: liquids

Water Ice

Phase transitions 

Magnetic phase transition

Water-Ice phase transition

Many properties of a system at a 
phase transition are universal 



Phase transition in connectedness
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Erdos-Renyi random network model

List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with p ~ 1/N

5HDO�1HWZRUN�DUH�6XSHUFULWLFDO

Most real networks are in the 
supercritical regime

Random network theory then implies that they 
should have: Giant Component + many 

disconnected ones  
-> but real networks are usually fully connected



Frigyes Karinthy, 1929
Stanley Milgram, 1967

Peter

Jane

SarahRalph

SIX DEGREES       small worlds
Erdos-Renyi random network model
What about distances? Small World



DISTANCES IN RANDOM GRAPHS
In	the	language	of	network	science	the	small	world	phenomenon	implies	that	the	distance	between	
two	randomly	chosen	nodes	in	a	network	is	short.	This	statement	raises	two	questions:	What	does	
short	(or	small)	mean,	i.e.	short	compared	to	what?	How	do	we	explain	the	existence	of	these	short	
distances?	Both	questions	are	answered	by	a	simple	calculation.	Consider	a	random	network	with	
average	degree	<k>.	A	node	in	this	network	has	on	average:	

Network Science: Random Graphs 

� 

dmax =
logN
log k

� 

N =1+ k + k 2 + ...+ k dmax =
k dmax +1 −1
k −1

≈ k dmax

21

SMALL WORLDS
SECTION 3.8

The small world phenomenon, also known as six degrees of separation, 
has long fascinated the general public. It states that if you choose any two 
individuals anywhere on earth, you will find a path of at most six acquain-
tances between them (Figure 3.10). The fact that individuals who live in the 
same city are only a few handshakes from each other is by no means sur-
prising. The small world concept states, however, that even individuals 
who are on the opposite side of the globe can be connected to us via a few 
acquaintances. 

In the language of network science the small world phenomenon im-
plies that the distance between two randomly chosen nodes in a network 
is short. This statement raises two questions: What does short (or small) 
mean, i.e. short compared to what? How do we explain the existence of 
these short distances?

Both questions are answered by a simple calculation. Consider a ran-
dom network with average degree <k>.  A node in this network has on av-
erage:

 <k> nodes at distance one (d=1).
 <k>2 nodes at distance two (d=2).
 <k>3 nodes at distance three (d =3).
 ...
 <k>d nodes at distance d.

For example, if  <k>�1,000ݍ, which is the estimated number of acquain-
tences an individual has, we expect 106 individuals at distance two and 
about a billion, i.e. almost the whole earth’s population, at distance three 
from us.

 
To be precise, the expected number of nodes up to distance d from our 

starting node is

      

RANDOM NETWORKS

According to six degrees of separation two 
individuals, anywhere in the world, can be 
connected through a chain of six or fewer ac-
quaintances. This means that while Sarah does 
not know Peter, she knows Ralph, who knows 
Jane and who in turn knows Peter. Hence Sar-
ah is three handshakes, or three degrees from 
Peter. In the language of network science six 
degrees, also called the small world proper-
ty, means that the distance between any two 
nodes in a network is unexpectedly small.

Figure 3.10

Six Deegree of Separation
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w
qq

q
q

q

q

w

w

w

�N d k k k
k
k

( ) 1 ...
1

1
.d

d
2

1

+ 〈 〉 + 〈 〉 + + 〈 〉 = 〈 〉 −
〈 〉 −

+

(3.15)

For example, if <k> ≈ 1,000, which is the estimated number of acquain- tences an 
individual has, we expect 106 individuals at distance two and about a billion, i.e. 
almost the whole earth’s population, at distance three from us.

Erdos-Renyi random network model
Let’s try an easy case

<k> nodes at distance d=1
<k>^2 nodes at distance d=2
<k>^3 nodes at distance d=3

…..

1 + < k > + < k >2 + < k >3 + . . . . = N(d)

< k >dmax+1 − 1
< k > − 1

= N(dmax) = N → dmax ≃
log N

log < k >

Wrong! This is actually closer to the average distance! < d > ≃
log N

log < k >

Assume  <k> >> 1

This is small world: <d> << N for large N

Geometric series

Small world property<d>: avg shortest path



Erdos-Renyi random network model
List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with p ~ 1/N
- Small worldness

Given the huge differences in scope, size, and average degree, the agreement is excellent.

DISTANCES IN RANDOM GRAPHS        compare with real data



Why are small worlds surprising? Suprising compared to what?

Network Science: Random Graphs 

Is small-world surprising?
Compared to lattices (for which we have more intuition), yes



WATTS-STROGATZ MODEL

Reconciling two observations:
• High clustering: my friends� friends tend to be my friends
• Short average paths

Regular Small World Random

p=0 p=1
Increasing randomness

Can we reconcile SW and high C? Watts-Strogatz model

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of ‘small-world’networks." nature 393.6684 (1998): 440-442.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Regular lattices: not small world, and high clustering 
Random network: small world, but low clustering C(p): avg clustering coeff as a function of p 

L(p): average shortest path length as a function of p



Erdos-Renyi random network model
List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with p ~ 1/N
- Small worldness emerges naturally. 
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What does scale-freeness mean? Hubs 



What does scale-freeness mean? 

Discrete formalism
<latexit sha1_base64="KH6WsnjZphAyUe9me4dbzp1L43s="></latexit>
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A scale-free network is a network whose degree 
distribution follows a power law. 

Continuous formalism
<latexit sha1_base64="pAt1iAgBJll263IsA3akxkFktTs="></latexit>
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THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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The difference between a power law and an exponential distribution
Why is scale-freeness important? 

80/20 RULE

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, political scientist and 
philosopher, who had important contributions to our understanding of income distribution and to the analysis of 
individuals choices. A number of fundamental principles are named after him, like Pareto efficiency, Pareto 
distribution (another name for a power-law distribution), the Pareto principle (or 80/20 law).

80/20 RULE

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, political scientist and 
philosopher, who had important contributions to our understanding of income distribution and to the analysis of 
individuals choices. A number of fundamental principles are named after him, like Pareto efficiency, Pareto 
distribution (another name for a power-law distribution), the Pareto principle (or 80/20 law).

Vilfredo Federico Damaso Pareto  
(1848 – 1923) 

Hubs!



Network Science: Scale-Free Property
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to the Bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways connect-
ing them. There are no cities with hundreds of 
highways and no city is disconnected from the 
highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports to each other. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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Why is scale-freeness important? 

Implies heterogeneity 
Changes network “topology” 
Affects dynamical processes



Why is scale-freeness important? 
One hub to rule them all. 
Power laws “diverge” often, but networks are finite, hence max degree exists

<latexit sha1_base64="hAhtQROBwoUkxMjpoT/BiT0RpTs=">AAACGXicbVA9T8MwEHX4LOWrwMhiUSHBUiWoAsYKFiZUJFoqNSVyXAes2E6wL4gqyt9g4a+wMIAQI0z8G9zSAShPOun5vTv57oWp4AZc99OZmp6ZnZsvLZQXl5ZXVitr622TZJqyFk1EojshMUxwxVrAQbBOqhmRoWAXYXw89C9umTY8UecwSFlPkivFI04JWCmouD5XEORxkEtyVxSX9hnBAKc78W4/xtg3XLIb7Eea0Nwr8tMiqFTdmjsCniTemFTRGM2g8u73E5pJpoAKYkzXc1Po5UQDp4IVZT8zLCU0Jlesa6kikplePrqswNtW6eMo0bYU4JH6cyIn0piBDG2nJHBt/npD8T+vm0F02Mu5SjNgin5/FGUCQ4KHMeE+14yCGFhCqOZ2V0yviU0BbJhlG4L39+RJ0t6refu1+lm92jgax1FCm2gL7SAPHaAGOkFN1EIU3aNH9IxenAfnyXl13r5bp5zxzAb6BefjC+r4oNs=</latexit>Z 1

kmax

p(k)dk ' 1

N

<latexit sha1_base64="0z+OVBXpxEi+2cjNm4hj0QcnIgM=">AAAC3XicbVJda9swFJXdfXTZV9Y+7kUsDFJGg13KtpdCaV/2NFpY2rLYMdeKnApLsifJo8EI+tKHjbHX/a+99X/0B1RJHPqRXjAcnXvOkXWltORMmyC49PyVR4+fPF191nr+4uWr1+03a0e6qBShfVLwQp2koClnkvYNM5yelIqCSDk9TvP9af/4J1WaFfKbmZQ0FjCWLGMEjKOS9lXEpEnqPKkFnFk7dMvMTHDZzTdGOcZ4B3ejMQgBm+HGVMSkHdYLxuKH3fmw3pxrrAvZwVGmgNy4Fs0PLmA5c3DjdoJ4OX2RN7feclrbaO9wONJM0B+Nye3+1SbtTtALZoWXQdiADmrqIGn/j0YFqQSVhnDQehAGpYlrUIYRTm0rqjQtgeQwpgMHJQiq43p2Oxa/d8wIZ4VynzR4xt521CC0nojUKQWYU32/NyUf6g0qk32OaybLylBJ5htlFcemwNOrxiOmKDF84gAQxdy/YnIKbgrGPYiWG0J4/8jL4GirF37sbR9ud3b3mnGsorfoHeqiEH1Cu+gLOkB9RLzv3rn3y/vtJ/6F/8f/O5f6XuNZR3fK/3cNpTLpFg==</latexit>Z 1

kmax

p(k)dk = (� � 1)k��1
min

Z 1

kmax

k��dk =
� � 1

�� + 1
k��1
min[k

��+1]1kmax
=

kmin��1

kmax��1

' 1

N

<latexit sha1_base64="a962V9g+xRUiOZA1FyRDBGHySwU="></latexit>

kmax = kminN
1

��1

Finite scale-free networks

kmax = kminN
1

γ −1

The size of the largest hub

THE SCALE FREE PROPERTY HUBS11

The expected degree of the largest node (natu-
ral cutoff) in scale-free and random networks 
with the same average degree ࢭk3 =ࢮ. For the 
scale-free network we chose ਠ�= 2.5. For com-
parison, we also show the linear behavior, 
kmax Ȯ N − 1, expected for a complete network. 
Overall, hubs in a scale-free network are sev-
eral orders of magnitude larger than the big-
gest node in a random network with the same 
N and ࢭkࢮ.

Figure 4.5
Hubs are Large in Scale-free Networks

(4.18)γ −k k N~ .max min

1
1

Equation (4.16) yields

As lnN is a slow function of the system size, (4.17) tells us that the max-
imum degree will not be significantly different from kmin. For a Poisson 
degree distribution the calculation is a bit more involved, but the obtained 
dependence of kmax on N is even slower than the logarithmic dependence 
predicted by (4.17) (ADVANCED TOPICS 3.B).

For a scale-free network, according to (4.12) and (4.16), the  natural cutoff 
follows

Hence the larger a network, the larger is the degree of its biggest hub.
The polynomial dependence of kmax on N implies that in a large scale-free 
network there can be orders of magnitude differences in size between the 
smallest node, kmin, and the biggest hub, kmax (Figure 4.5).

To illustrate the difference in the maximum degree of an exponential 
and a scale-free network let us return to the WWW sample of Figure 4.1, 
consisting of N 105 × 3 ݍ nodes. As kmin = 1, if the degree distribution were to 
follow an exponential, (4.17) predicts that the maximum degree should be 
kmax13 ݍ�. In a scale-free network of similar size and ਠ�= 2.1, (4.18) predicts 
kmax 85,000 ݍ, a remarkable difference. Note that the largest in-degree of 
the WWW map of Figure 4.1 is 10,721, which is comparable to kmax predicted 
by a scale-free network. This reinforces our conclusion that in a random 
network hubs are effectivelly forbidden, while in scale-free networks they 
are naturally present.

In summary the key difference between a random and a scale-free net-
work is rooted in the different shape of the Poisson and of the power-law 
function: In a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected 
in scale-free networks (Figure 4.6). Furthermore, the more nodes a scale-
free network has, the larger are its hubs. Indeed, the size of the hubs grows 
polynomially with the network size, hence they can grow quite large in 
scale-free networks. In contrast in a random network the size of the larg-
est node grows logarithmically or slower with N, implying that hubs will be 
tiny even in a very large random network.

kmax

N
100

102 106104 108 1010 1012

101

102

103

104

105

107

108

109

1010

RANDOM NETWORK

SCALE-FREE
(N - 1)

kmax ~ InN

kmax ~ N
1

(җ��)kmax = kmin +
lnN
�
. (4.17)

Γ=2.5

estimated degree of the largest node 
(natural cutoff) in scale-free and random 
networks with the same average degree 
⟨k⟩= 3

•kmax, increases with the size of the network ==> bigger system, bigger hub  

•For γ>2, kmax increases slower than N ==> decreasing fraction of links as N increases. 

•For γ=2 kmax~N ==> The size of the biggest hub is O(N) 

•For γ<2 kmax increases faster than N: condensation phenomena ==> the largest hub will 
grab an increasing fraction of links. Anomaly! 
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� = 2.5

How does the network size affect the size of the largest hub?

Assume only one node By def, for scale free



Why is scale-freeness important? 
More divergences!
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if m� � + 1 < 0: < km >=
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if m� � + 1 > 0: < km >! 1

< km >= (γ −1)kmin
γ −1 km−λ dk

kmin

∞

∫ = (γ −1)
(m −γ +1)

kmin
γ −1 km−γ +1⎡⎣ ⎤⎦kmin

∞

For a fixed λ this means all moments   m>γ-1 diverge.  

Many degree exponents are smaller 
than 3

à <k2> diverges in the Nà∞ limit!!!

DIVERGENCE OF THE HIGHER MOMENTS

Network Science: Scale-Free Property
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For � < 3, < k2 >! 1
This implies:

As N goes to infinity: this means there is no single scale



Phase transitions in complex systems I: Magnetism

T = 0.99 Tc T = 0.999 Tc

ξ ξ

T = Tc T = 1.5 Tc T = 2 Tc

Network Science: Scale-Free Property

• Correlation length diverges at the critical point: the whole system is correlated!

• Scale invariance: there is no characteristic scale for the fluctuation (scale-free behavior).

• Universality: exponents are independent of the system’s details. 

Why is scale-freeness important? 
Origin of the name



(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 
Links:   physical lines

INTERNET BACKBONE

Network Science: Scale-Free Property

Why is scale-freeness important? 
Universality?

Network Science: Scale-Free Property

SCIENCE COAUTHORSHIP

M: math
NS: neuroscience

Nodes: scientist (authors) 
Links: joint publication

(Newman, 2000, Barabasi et al 2001)
Network Science: Scale-Free Property

Nodes: online user  
Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 
112 days, N=59,912 nodes

Pussokram.com online community; 
512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES
Nodes: online user  
Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 
112 days, N=59,912 nodes

Pussokram.com online community; 
512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES

ONLINE COMMUNITIES

Twitter:

Jake Hoffman, Yahoo, 

Facebook

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011

C. Elegans

Li et al. Science 2004

Drosophila M.

Giot et al. Science 2003

Scalefree networks well done: 

https://arxiv.org/abs/1811.02071

Scale free networks are rare: 

https://www.nature.com/articles/
s41467-019-08746-5



Distances in scale-free networks

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.

The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes. 

Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier.

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001

Ultra 
Small 
World 

Small 
World

SMALL WORLD BEHAVIOR IN SCALE-FREE NETWORKS

kmax = kminN
1

γ −1

Why is scale-freeness important? 
Effects on the distances (smaller than in random)



SUMMARY OF THE BEHAVIOR OF SCALE-FREE NETWORKS

THE SCALE-FREE PROPERTY THE ROLE OF THE DEGREE EXPONENT25
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THE Ƣ DEPENDENT PROPERTIES OF SCALE-FREE NETWORKS

Why is scale-freeness important? 
Recap

Distances in scale-free networksGraphicality: No large networks for γ<2

kmax = kminN
1

γ −1In scale-free networks: For γ<2:   1/(γ-2)>1

Fraction of networks, g, for a 

given γ that are graphical. 

Small gamma? Graphicality

P. Erdős and T. Gallai. Graphs with given degrees of vertices. Matematikai 
Lapok, 11:264-274, 1960.

C.I. Del Genio, H. Kim, Z. Toroczkai, and K.E. Bassler. Efficient and exact 
sampling of simple graphs with given arbitrary degree sequence. PLoS ONE, 
5: e10012, 04 2010.

V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat., 
80:477-480, 1955.
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Large gamma?

Graphical: a degree sequence  
that can be turned into a graph



(SRǰKYVEXMSR�QSHIP

2SPPS]�7IIH
2ULJLQDO�LGHD�

�� *LYHQ�D�GHJUHH�VHTXHQFH
�� $VVLJQ�WR�HDFK�QRGH��������������������VWXEV
�� 6HOHFW�UDQGRP�SDLUV�RI�XQPDWFKHG�VWXEV�DQG�

FRQQHFW�WKHP
�� 5HSHDW���ZKLOH�WKHUH�DUH�XQPDWFKHG�VWXEV��

6XFK�SURFHVV�SURGXFHV�D�FRQĆJXUDWLRQ�PRGHO�WKDW�
SUHVHUYHV�WKH�LQSXW�GHJUHH�VHTXHQFH��DOORZLQJ�

� PXOWL�OLQNV�
� VHOI�OLQNV

7KHRU\

Can we constrain random models to be scale-free?
(Growing models next time) Now configuration model: fix the degree sequence, shuffle rest(SRǰKYVEXMSR�QSHIP

2SPPS]�7IIH $Q�HIIHFWLYH�DOJRULWKP

�� 7DNH�DQ�DUUD\�����ZLWK�OHQJWK��P�DQG�ĆOO�LW�ZLWK�NL�
LQGLFHV�RI�HDFK�QRGH�

�� 0DNH�D�UDQGRP�SHUPXWDWLRQ�RI�WKH�DUUD\

�� 5HDG�WKH�FRQWHQW�RI�WKH�DUUD\�DV�RUGHUHG�SDLUV

�� (DFK�SDLU�RI�FRQVHFXWLYH�QRGH�LQGLFHV�FUHDWH�D�
OLQNV�LQ�WKH�FRQĆJXUDWLRQ�QHWZRUN�

3UDFWLFH

expected number of self-loops and multi-links goes to zero in the N → ∞ limit.



Can we constrain random models to be scale-free?
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where q_k denotes the probability that a random edge reaches a degree-k vertex

probability that a random edge reaches a degree- vertex

https://arxiv.org/pdf/1910.11341.pdf
https://2019.qmplus.qmul.ac.uk/mod/resource/view.php?id=304719
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i.e. S > 0. This drastic change in the structure of the network, is character-
ized with the same tools used to study phase transitions in condensed matter,
(ex. the transition between a ferromagnetic and a paramagnetic material as a
function of the temperature). In this chapter we will study how to characterize
the emergence of the giant component in sparse networks with generic degree
distribution P (k) and finite average degree hki. Interestingly we will show that
the main parameter that determines weather or not there is a giant component
in the network is not given in general by the average degree but it given by
hk(k�1)i

hki . We start by defining a recursive criterion for determining is a node of
the network is in the giant component. Applying this definition we will first find
the equation for the fraction S of nodes in the giant component of a network
with degree distribution P (k), and secondly we will show that a network has a
giant component S > 0 if and only if hk(k�1)i

hki > 1 or, equivalently if and only if
hk

2
i

hki > 2.
Let us stat with a recursive algorithm to define is a node is in the giant compo-
nent of a network.

Definition 4. A node is in the giant component of the network if, at least one

of its links reach a node that is also in the giant component of the network.

A node reached by following a link of a network is in the giant component if at

least one of the nodes reached by following one of the other links of the node is

also in the giant component.

Proposition 8.4.1. The probability S0
that by following a link, in a locally

tree-like network with degree distribution P (k) we reach a node in the giant

component, needs to satisfy the following equation:

S0 = 1 �
X

k

k

hki
P (k)(1 � S0)k�1. (8.16)

The fraction of nodes S that are in the giant component of the same network is

given by

S = 1 �
X

k

P (k)(1 � S0)k, (8.17)

where S0
is the solution of Eq. (??).

Proof. To find the equation Eq. (8.16) for S0 we use the recursive rule for
determining is a node reached by following a link in the network is in the giant
component. By following a link we reach a node of degree k with probability
qk = kP (k)/hki, the probability that at least one of the remaining k � 1 links
of this node reach a node in the giant component is

1 � (1 � S0)k�1, (8.18)

Can we constrain random models to be scale-free?
Elements of Molloy-Reed criterion

Probability following link to node in GC satisfies
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Prob reach k node
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qk =
kp(k)

< k >

Prob other links link to GC
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where we have assumed that the network is locally tree-like and neglected any
possible correlations between the fact that two or more neighbours of the same
node are/(are not) in the giant component. Therefore summing over all the
possible degrees k of the node reached by following a link, we have

S0 =
X

k

k

hki
P (k)

⇥
1� (1� S0)k�1

⇤

S0 = 1�
X

k

k

hki
P (k)(1� S0)k�1. (8.19)

To find the expression for S, the fraction of nodes in the giant component of
the network, we first notice that S indicates also the probability that a random
node is in the giant component, when we consider the limit N !1. A random
node of the network has degree k with probability P (k). The probability that a
node of degree k is not in the giant component is given by the probability that
all this links reach nodes that are not in the giant component, therefore we have

1� S =
X

k

P (k)(1� S0)k. (8.20)

Finally the fraction S of nodes in the giant component can be written as

S = 1�
X

k

P (k)(1� S0)k. (8.21)

Proposition 8.4.2. The Molloy-Reed criterion for having a giant component

is the following: a sparse random network with degree distribution P (k) has a

giant component if and only if

hk2
i

hki
> 2. (8.22)

Proof. the fraction of nodes S in the giant component satisfies Eq. (8.17), i.e.

S = 1�
X

k

P (k)(1� S0)k, (8.23)

therefore there is a giant component in the network (S > 0) if and only if S0 > 0.
The probability S0 satisfies Eq. (8.16) given by

S0 = 1�
X

k

k

hki
P (k)(1� S0)k�1. (8.24)

This equation is always satisfied for S0 = 0, but, depending on the properties
of the degree distribution P (k) it can have another non-trivial solution S0 > 0.
Unfortunately this equation cannot be solved analytically for arbitrary value of

20 CHAPTER 8. G. BIANCONI:COMPLEX NETWORKS

i.e. S > 0. This drastic change in the structure of the network, is character-
ized with the same tools used to study phase transitions in condensed matter,
(ex. the transition between a ferromagnetic and a paramagnetic material as a
function of the temperature). In this chapter we will study how to characterize
the emergence of the giant component in sparse networks with generic degree
distribution P (k) and finite average degree hki. Interestingly we will show that
the main parameter that determines weather or not there is a giant component
in the network is not given in general by the average degree but it given by
hk(k�1)i

hki . We start by defining a recursive criterion for determining is a node of
the network is in the giant component. Applying this definition we will first find
the equation for the fraction S of nodes in the giant component of a network
with degree distribution P (k), and secondly we will show that a network has a
giant component S > 0 if and only if hk(k�1)i

hki > 1 or, equivalently if and only if
hk

2
i

hki > 2.
Let us stat with a recursive algorithm to define is a node is in the giant compo-
nent of a network.

Definition 4. A node is in the giant component of the network if, at least one

of its links reach a node that is also in the giant component of the network.

A node reached by following a link of a network is in the giant component if at

least one of the nodes reached by following one of the other links of the node is

also in the giant component.

Proposition 8.4.1. The probability S0
that by following a link, in a locally

tree-like network with degree distribution P (k) we reach a node in the giant

component, needs to satisfy the following equation:

S0 = 1 �
X

k

k

hki
P (k)(1 � S0)k�1. (8.16)

The fraction of nodes S that are in the giant component of the same network is

given by

S = 1 �
X

k

P (k)(1 � S0)k, (8.17)

where S0
is the solution of Eq. (??).

Proof. To find the equation Eq. (8.16) for S0 we use the recursive rule for
determining is a node reached by following a link in the network is in the giant
component. By following a link we reach a node of degree k with probability
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To find the expression for S, the fraction of nodes in the giant component of
the network, we first notice that S indicates also the probability that a random
node is in the giant component, when we consider the limit N !1. A random
node of the network has degree k with probability P (k). The probability that a
node of degree k is not in the giant component is given by the probability that
all this links reach nodes that are not in the giant component, therefore we have
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Finally the fraction S of nodes in the giant component can be written as
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Proposition 8.4.2. The Molloy-Reed criterion for having a giant component

is the following: a sparse random network with degree distribution P (k) has a

giant component if and only if

hk2
i

hki
> 2. (8.22)

Proof. the fraction of nodes S in the giant component satisfies Eq. (8.17), i.e.

S = 1�
X

k

P (k)(1� S0)k, (8.23)

therefore there is a giant component in the network (S > 0) if and only if S0 > 0.
The probability S0 satisfies Eq. (8.16) given by

S0 = 1�
X

k

k

hki
P (k)(1� S0)k�1. (8.24)

This equation is always satisfied for S0 = 0, but, depending on the properties
of the degree distribution P (k) it can have another non-trivial solution S0 > 0.
Unfortunately this equation cannot be solved analytically for arbitrary value of

Probability node is not in GC == prob all its edges link to non GC
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S0. For this reason we will make use of some graphical argument. The solution
of Eq. (8.16) can be seen as the value of S0 where the two functions y = f(S0)
and y = g(S0) with

f(S0) = S0

g(S0) = 1 �
X

k

k

hki
P (k)(1 � S0)k�1 (8.25)

cross.
Since the function g(S0) is an increasing function of S0, the non trivial solu-

tion S0 > 0 emerges when the functions y = f(S0) and y = g(S0) are tangent to
each other at S0 = 0.

In order to detect when this new solution emerges, we impose therefore

dS0

dS0

����
S0=0

=
d(1 �

P
k

k
hkiP (k)(1 � S0)k�1)

dS0

�����
S0=0

,

1 =
X

k

k(k � 1)
hki

P (k)

�����
S0=0

,

1 =
hk(k � 1)i

hki
(8.26)

Therefore a random network generated with the configuration model will have
a giant component if an only if

hk(k � 1)i
hki

> 1, (8.27)

or
hk2

i

hki2
> 2. (8.28)

8.4.1 Giant component in Poisson and scale-free networks

Proposition 8.4.3. The Molloy-Reed condition for having a giant component

in a Poisson network reduced to the already obtained necessary and su�cient

condition

c = hki > 1. (8.29)

Proof. In fact for a Poisson degree distribution P (k) = cke�c/k! we have hk(k � 1)i =
c2 and hki = c. Therefore the Molloy-Reed condition can be written as

hk(k � 1)i
hki

> 1

c2

c
= c = hki > 1. (8.30)

Again we need a graphical solution:
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Molloy-Reed criterion

(Check proposition 8.4.1-2-3 here)
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