Network theory Part II

CENTAI

ISI
Foundation

Complexity in Social Systems
AA 2023/2024
Maxime Lucas Lorenzo Dall'Amico

Recap last lecture

Types of networks

Un/directed
Weighted
Bipartite

Concepts

Degree
Weights
Adjacency matrix Paths/components Clustering coefficient

Properties

Scale-free Sparseness Connectedness Small-worldness High clustering

Centralities

Today's topic: Random models

Ensembles of networks with constraints
but otherwise maximally random

Why?
They help us understand what is structure and what is random

Erdos-Renyi random network model

G(N, L) Model
N labeled nodes are connected with L randomly placed links. Erdős and Rényi used this definition in their string of papers on random networks [2-9].

$\mathrm{L}=10$

Pál Erdös (1913-1996)

Erdös-Rényi model (1960)

Erdos-Renyi random network model

Probability of a network in the ensemble

probability to have exactly L links in a network of N nodes and probability p

Number of different ways we can
choose L links among all potential links.

Erdos-Renyi random network model

Average degree

$$
P(L)=\binom{\binom{N}{2}}{L} p^{L}(1-p)^{\frac{N(N-1)}{2} L}
$$

Micro-recap

$$
\begin{aligned}
& P(x)=\binom{T}{x} p^{x}(1-p)^{T-x} \\
& <x>=T p \\
& <x^{2}>=p(1-p) T+p^{2} T^{2} \\
& \sigma_{x}=[p(1-p) T]^{1 / 2}
\end{aligned}
$$

Average degree

$$
\begin{aligned}
& <L>=\sum_{L=0}^{\binom{N}{2}} L P(L)=p \frac{N(N-1)}{2} \\
& <k>=2 L / N=p(N-1)
\end{aligned}
$$

We are constraining the average degree! So if we want SPARSENESS, we need small p

Erdos-Renyi random network model

Degree distribution

$$
\begin{aligned}
& p(k)=\binom{N-1}{k} p^{k}(1-p)^{(N-1)-k} \\
& \text { For large } \mathbf{N} \\
& <k>=p(N-1) \quad \sigma_{k}^{2}=p(1-p)(N-1)
\end{aligned}
$$

For large \mathbf{N} and small k :
<k> << N

$$
\begin{aligned}
& \binom{N-1}{k}=\frac{(N-1)!}{k!(N-1-k)!}=\frac{(N-1)(N-1-1)(N-1-2) \ldots(N-1-k+1)(N-1-k)!}{k!(N-1-k)!}=\frac{(N-1)^{k}}{k!} \\
& \ln \left[(1-p)^{(N-1)-k}\right]=(N-1-k) \ln \left(1-\frac{<k>}{N-1}\right)=-(N-1-k) \frac{<k>}{N-1}=-<k>\left(1-\frac{k}{N-1}\right) \cong-<k> \\
& (1-p)^{(N-1)-k}=e^{-<k>} \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad \text { for } \quad|x| \leq 1
\end{aligned}
$$

Erdos-Renyi random network model

Poisson limit of degree distribution
$p(k)=\binom{N-1}{k} p^{k}(1-p)^{(N-1)-k}$
$p(k)=e^{-<k>} \frac{<k>^{k}}{k!}$

Does not depend on N

Both peak around <k> Dispersion controlled by <k> or p

Erdos-Renyi random network model

And nope.. ER does not reproduce realistic degree distributions

Science Collaboration

Protein Interactions

Dashed line: Poisson with <k> computed from data

Erdos-Renyi random network model

List of results:

- we can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw

Erdos-Renyi random network model

What about clustering?

$$
C_{i}=\frac{2 L_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$$
C_{i}=p=\frac{\langle k\rangle}{N}
$$

We CAN constrain the clustering (but uniform)! So if we want high clustering, we need large p!

We are constraining the average degree!
So if we want SPARSENESS, we need small p

Erdos-Renyi random network model

List of results:

C seems independent of N

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)

Network	Size	$\langle k\rangle$	ℓ	$\ell_{\text {rand }}$	C	$C_{\text {rand }}$	Reference
WWW, site level, undir.	153127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999
Internet, domain level	$3015-6209$	$3.52-4.11$	$3.7-3.76$	$6.36-6.18$	$0.18-0.3$	0.001	Yook et all., 2001a,
Movie actors	25256	61	3.65	2.99	0.79	0.00027	Pastor-Satorras et al., 2001
Watts and Strogatz, 1998							
LANL co-authorship	52909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship	1520251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c
SPIRES co-authorship	56627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship	11994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c
Math. co-authorship	70975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al., 2001
Neurosci. co-authorship	209293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et all, 2001b
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998

Green curve is <C>

Erdos-Renyi random network model

What about connectedness? Let's guess a criterion!
$\langle k\rangle$
0.5

0.75

$<k_{c}>=1 \quad$ Necessary! Ok.. but sufficient?
Erdos and Renyi, 1959

Probability that i is not in GC?

$$
\begin{array}{lll}
\text { 1) } \quad i \nsim j \in G C & \rightarrow & (1-p) \\
\text { 2) } \quad i \sim j \notin G C & \rightarrow & (p u)
\end{array}
$$

Erdos-Renyi random network model

What about connectedness? Let's guess a criterion!
$(1-p+p u)^{N-1}=u \quad N_{G C}=N(1-u) \quad p=\frac{<k>}{N-1} \quad \rightarrow \quad(N-1) \ln \left[1-\frac{<k>}{N-1}(1-u)\right]=\ln u$
$\rightarrow \quad-<k>(1-u) \approx \ln u \quad \rightarrow \quad u \sim e^{-<k>(1-u)}, \quad S=N_{G C} / N=1-u \quad \rightarrow \quad S=1-e^{-<k>S}$

Does not have a closed solution: let's solve graphically

Derive both sides!

$$
1=\left[\frac{d}{d S}\left(1-e^{-<k>S}\right)\right]_{S=0}
$$

$$
<k>=1
$$

Phase transitions

Water-Ice phase transition

Water

Ice

Second Order Phase

Second Order Phase

Many properties of a system at a phase transition are universal

Phase transition in connectedness

Erdos-Renyi random network model

Most real networks are in the

 supercritical regimeRandom network theory then implies that they should have: Giant Component + many disconnected ones
-> but real networks are usually fully connected

List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with p ~ 1/N
-

Erdos-Renyi random network model

What about distances? Small World

Frigyes Karinthy, 1929
Stanley Milgram, 1967

Erdos-Renyi random network model

Let's try an easy case

Wrong! This is actually closer to the average distance!

$$
<d>\simeq \frac{\log N}{\log <k>}
$$

This is small world: <d> << N for large \mathbf{N} <d>: avg shortest path

Erdos-Renyi random network model

List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with $p \sim 1 / \mathrm{N}$
- Small worldness

NETWORK	N	L	$\langle k\rangle$	$\langle d\rangle$	$d_{\text {max }}$	$\frac{\ln N}{\ln \langle k\rangle}$
Internet	192,244	609,066	6.34	6.98	26	6.58
www	325.729	1,497,134	4.60	11.27	93	8.31
Power Grid	4.941	6,594	2.67	18.99	46	8.66
Mobile Phone Calls	36,595	91,826	2.51	11.72	39	11.42
Email	57,194	103.731	1.81	5.88	18	18.4
Science Collaboration	23,133	93,439	8.08	5.35	15	4.81
Actor Network	702,388	29,397,908	83.71	3.91	14	3,04
Citation Network	449,673	4.707,958	10.43	11,21	42	5.55
E. Coli Metabolism	1,039	5,802	5.58	2.98	8	4.04
Protein Interactions	2,018	2,930	2.90	5.61	14	7.14

Is small-world surprising?

Compared to lattices (for which we have more intuition), yes

Can we reconcile SW and high C? Watts-Strogatz model

Regular lattices: not small world, and high clustering Random network: small world, but low clustering

Increasing randomness
$C(p):$ avg clustering coeff as a function of p $L(p)$: average shortest path length as a function of p

Erdos-Renyi random network model

List of results:

- We can reproduce sparseness using N and p
- Degree distribution is binomial/poisson NOT broad/powerlaw
- We can reproduce high clustering, but not low density (or viceversa)
- We can reproduce connectedness with $p \sim 1 / \mathrm{N}$
- Small worldness emerges naturally.

Network	Degree Distribution	Path Length	Clustering Coefficient
Real-world networks	Broad	Short	Large
ER graphs	Poissonian	Short	Small

What does scale-freeness mean? Hubs

What does scale-freeness mean?

A scale-free network is a network whose degree distribution follows a power law.

\[

\]

Why is scale-freeness important?

(c)

(d)

Hubs!

Why is scale-freeness important?

Why is scale-freeness important?

One hub to rule them all. How does the network size affect the size of the largest hub?
Power laws "diverge" often, but networks are finite, hence max degree exists

$$
\int_{k_{\max }}^{\infty} p(k) d k \simeq \frac{1}{N} \quad \int_{k_{\max }}^{\infty} p(k) d k=(\gamma-1) k_{\min }^{\gamma-1} \int_{k_{\max }}^{\infty} k^{-\gamma} d k=\frac{\gamma-1}{-\gamma+1} k_{\min }^{\gamma-1}\left[k^{-\gamma+1}\right]_{k_{\max }}^{\infty}=\frac{k_{\min \gamma-1}}{k_{\max }{ }^{\gamma-1}} \simeq \frac{1}{N}
$$

$$
k_{\max }=k_{\min } N^{\frac{1}{\gamma-1}}
$$

$\cdot \mathrm{k}_{\text {max }}$, increases with the size of the network $==>$ bigger system, bigger hub
-For $\gamma>2$, $k_{\max }$ increases slower than $N==>$ decreasing fraction of links as N increases. -For $\gamma=2 k_{\max } \sim N==>$ The size of the biggest hub is $O(N)$
-For $\mathrm{Y}<2 \mathrm{k}_{\text {max }}$ increases faster than N : condensation phenomena $==>$ the largest hub will grab an increasing fraction of links. Anomaly!

Why is scale-freeness important?

More divergences!

$$
\begin{aligned}
& <k^{m}>=\int_{k_{\text {min }}}^{\infty} k^{m} p(k) d k \quad p(k)=(\gamma-1) k_{\text {min }}^{\gamma-1} k^{-\gamma} \\
& <k^{m}>=(\gamma-1) k_{\text {min }}^{\gamma-1} \int_{k_{\min }}^{\infty} k^{m-\gamma} d k=\frac{\gamma-1}{m-\gamma+1} k_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{k_{m i n}}^{\infty}
\end{aligned}
$$

if $m-\gamma+1<0: \quad<k^{m}>=\frac{\gamma-1}{m-\gamma+1} k_{\text {min }}^{m}$
if $m-\gamma+1>0: \quad<k^{m}>\rightarrow \infty$

This implies:
For $\gamma<3, \quad<k^{2}>\rightarrow \infty$
As \mathbf{N} goes to infinity: this means there is no single scale

Network	Size	$\langle k\rangle$	κ	$\gamma_{o w t}$	$\gamma_{i n}$
WWW	325729	4.51	900	2.45	2.1
WWW	4×10^{7}	7		2.38	2.1
WWW	2×10^{6}	7.5	4000	2.72	2.1
WWW, site	260000				1.94
Internet, domain**	$3015-4389$	$3.42-3.76$	$30-40$	$2.1-2.2$	$2.1-2.2$
Internet, router*	3888	2.57	30	2.48	2.48
Internet, router*	150000	2.66	60	2.4	2.4
Movie actors*	212250	28.78	900	2.3	2.3
Co-authors, SPIRES*	56627	173	1100	1.2	1.2
Co-authors, neuro**	209293	11.54	400	2.1	2.1
Co-authors, math.*	70975	3.9	120	2.5	2.5
Sexual contacts*	2810			3.4	3.4
Metabolic, E. coli	778	7.4	110	2.2	2.2
Protein, S. cerev**	1870	2.39		2.4	2.4
Ythan estuary*	134	8.7	35	1.05	1.05
Silwood Park*	154	4.75	27	1.13	1.13
Citation	783339	8.57			3
Phone call	53×10^{6}	3.16		2.1	2.1
Words, co-occurrence**	460902	70.13		2.7	2.7
Words, synonyms*	22311	13.48		2.8	2.8

Why is scale-freeness important?

Origin of the name

ordered phase

disordered phase

Correlation length diverges at the critical point: the whole system is correlated!
Scale invariance: there is no characteristic scale for the fluctuation (scale-free behavior).

Nodes: scientist (authors) Links: joint publication

Why is scale-freeness important?

Universality?

Kiel University log files 112 days, $\mathrm{N}=59,912$ nodes

Ebel, Mielsch, Bornholdtz, PRE 2002.

(Faloutsos, Faloutsos and Faloutsos, 1999)
Scale free networks are rare https://www.nature.com/articles/ s41467-019-08746-5

Scalefree networks well done: https://arxiv.org/abs/1811.02071

Twitter:

C. Elegans

Why is scale-freeness important?

Effects on the distances (smaller than in random)

Ultra Small World	const.	$\gamma=2$	Size of the biggest hub is of order $\mathrm{O}(\mathrm{N})$. Most nodes can be connected within two layers of it, thus the average path length will be independent of the system size.
	$\frac{\ln \ln N}{\ln (\gamma-1)}$	$2<\gamma<3$	The average path length increases slower than logarithmically. In a random network all nodes have comparable degree, thus most paths will have comparable length. In a scale-free network the vast majority of the path go through the few high degree hubs, reducing the distances between nodes.
	$\frac{\ln N}{\ln \ln N}$	$\gamma=$	Some key models produce $\gamma=3$, so the result is of particular importance for them. This was first derived by Bollobas and collaborators for the network diameter in the context of a dynamical model, but it holds for the average path length as well.
Small World	$\ln N$	$\gamma>3$	The second moment of the distribution is finite, thus in many ways the network behaves as a random network. Hence the average path length follows the result that we derived for the random network model earlier.

Why is scale-freeness important?

Recap

Graphical: a degree sequence that can be turned into a graph
Small gamma? Graphicality
(a) Graphical
(b) Not Graphical
(c)
)

given Y that are graphical.

ANOMALOUS
REGIME
No large network can exist here

```
SCALE-FREE
    REGIME
```


RANDOM REGIME

Indistinguishable from a random network
P. Erdős and T. Gallai. Graphs with given degrees of vertices. Matematika Lapok, 11:264-274, 1960.
C.I. Del Genio, H. Kim, Z. Toroczkai, and K.E. Bassler. Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS ONE, 5: e10012, 042010.
V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat. 80:477-480, 1955

Large gamma?

$$
k_{\max }=10^{3} \rightarrow k_{\max }=k_{\min } N^{\frac{1}{\gamma-1}}
$$

$$
N=\left(\frac{k_{\max }}{k_{\min }}\right)^{\gamma-1} \simeq 10^{8}
$$

Can we constrain random models to be scale-free?

(Growing models next time) Now configuration model: fix the degree sequence, shuffle rest

Original idea:

1. Given a degree sequence $\vec{k}=\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$
2. Assign to each node $i \in V \quad k_{i}$ bs
3. Select random pairs of unmatched stubs and connect them
4. Repeat 3 while there are unmatched stubs

Such process produces a configuration model that preserves the input degree sequence, allowing:

- multi-links,
- self-links

An effective algorithm

1. Take an array \vec{v}, it length 2 m and fill it with ki indices of each node $i \in V$
2. Make a random permutation of the array \vec{v}
3. Read the content of the array as ordered pairs
4. Each pair of consecutive node indices create a links in the configuration network

11111222233334445567

Can we constrain random models to be scale-free?

Clustering

$$
C_{g}=\sum_{k_{i}, k_{j}=1}^{\infty} q_{k_{i}} q_{k_{j}} \frac{\left(k_{i}-1\right)\left(k_{j}-1\right)}{2 m}=\frac{1}{2 m}\left[\sum_{k=0}^{\infty}(k-1) q_{k}\right]^{2}
$$

Excess degree

$$
q_{k}=\frac{k p(k)}{<k>} \quad 2 m=N<k>
$$

Probability of edge (i, j) $p\left(k_{i}, k_{j}\right)=\frac{k_{i} k_{j}}{2 m}$

$$
C_{g}=\frac{1}{N<k>^{3}}\left[\sum_{k=1}^{\infty}(k-1) k p(k)\right]^{2}=\frac{\left(<k^{2}>-<k>\right)^{2}}{N<k>^{3}} \sim \frac{\text { const }}{N}
$$

Average degree of neighbours

$$
<k_{n n}>=\sum_{k} k q_{k}=\frac{<k^{2}>}{<k>}
$$

Micro-canonical model!
Canonical version: Chung-Lu model (https://arxiv.org/pdf/1910.11341.pdf)

Molloy-Reed criterion (homework!)

Network	Degree Distribution	Path Length	Clustering Coefficient
Real-world networks	Broad	Short	Large
ER graphs	Poissonian	Short	Small
Configuration model	Custom, can be broad	Short	Small

Can we constrain random models to be scale-free?

Elements of Molloy-Reed criterion

Definition 4. A node is in the giant component of the network if, at least one of its links reach a node that is also in the giant component of the network.
A node reached by following a link of a network is in the giant component if at least one of the nodes reached by following one of the other links of the node is also in the giant component.

Probability following link to node in GC satisfies

$$
S^{\prime}=1-\sum_{k} \frac{k}{\langle k\rangle} P(k)\left(1-S^{\prime}\right)^{k-1} .
$$

Prob reach k node Prob other links link to GC

$$
\begin{aligned}
q_{k} & =\frac{k p(k)}{\langle k>} \quad 1-\left(1-S^{\prime}\right)^{k-1} \\
S^{\prime} & =\sum_{k} \frac{k}{\langle k\rangle} P(k)\left[1-\left(1-S^{\prime}\right)^{k-1}\right] \\
S^{\prime} & =1-\sum_{k} \frac{k}{\langle k\rangle} P(k)\left(1-S^{\prime}\right)^{k-1} .
\end{aligned}
$$

Probability node is not in GC == prob all its edges link to non GC

$$
1-S=\sum_{k} P(k)\left(1-S^{\prime}\right)^{k} . \quad S=1-\sum_{k} P(k)\left(1-S^{\prime}\right)^{k}
$$

Again we need a graphical solution:

$$
\begin{aligned}
& f\left(S^{\prime}\right)=S^{\prime} \\
& g\left(S^{\prime}\right)=1-\sum_{k} \frac{k}{\langle k\rangle} P(k)\left(1-S^{\prime}\right)^{k-1}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\left.\frac{d S^{\prime}}{d S^{\prime}}\right|_{S^{\prime}=0} & =\left.\frac{d\left(1-\sum_{k} \frac{k}{\langle k\rangle} P(k)\left(1-S^{\prime}\right)^{k-1}\right)}{d S^{\prime}}\right|_{S^{\prime}=0}, & \frac{\langle k(k-1)\rangle}{\langle k\rangle}>1, \\
1 & =\left.\sum_{k} \frac{k(k-1)}{\langle k\rangle} P(k)\right|_{S^{\prime}=0}, & & \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}>2 .
\end{array}
$$

Molloy-Reed criterion

