Network theory Part I

CENTAI

ISI
Foundation

Complexity in Social Systems
AA 2023/2024
Maxime Lucas Lorenzo Dall'Amico

components

undirected vs directed

co-authorship
actor networks co-occurrence

phone calls
hyperlinks
scientific citations

reference networks

Network	Nodes	Links	Directed / Undirected	N	L	(K)
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

degree and degree distribution

$$
k_{A}=1 \quad k_{B}=4
$$

node degree: the number of links connected to the node

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

Source: degree in =0 Sink: degree out =0

BRIEF STATISTICS REVIEW

Four key quantities characterize a sample of N values x_{1}, \ldots, x_{N} :

Average (mean):
$\langle x\rangle=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

The $n^{\text {th }}$ moment:

$$
\left\langle x^{n}\right\rangle=\frac{x_{1}^{n}+x_{2}^{n}+\ldots+x_{N}^{n}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{n}
$$

Standard deviation:

$$
\sigma_{x}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}
$$

Distribution of x :

$$
p_{x}=\frac{1}{N} \sum_{i} \delta_{x, x_{i}}
$$

where p_{x} follows

$$
\sum_{i} p_{x}=1\left(\int p_{x} d x=1\right)
$$

degree distribution

$$
P(k)=\frac{N_{k}}{N}
$$ probability that a random chosen node has degree k

$$
\begin{array}{ll}
\langle k\rangle=\sum_{k} k P(k) & \sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2} \\
\left\langle k^{2}\right\rangle=\sum_{k} k^{2} P(k)
\end{array}
$$

real world networks

real world networks

adjacency matrix

$\mathbf{A}_{\mathrm{ij}}=\mathbf{1}$ if there is a link between node i and j
$\mathbf{A}_{\mathrm{ij}}=\mathbf{0}$ if nodes i and j are not connected to each other.

$$
A_{i j}=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A_{i j}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Note that for a directed graph (right) the matrix is not symmetric.

adjacency matrix

$$
\begin{aligned}
& A_{i j}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad k_{j}=\sum_{i=1}^{N} A_{i j} \\
& A_{i j}=A_{j i} \\
& L=\frac{1}{2} \sum_{i=1}^{N} k_{i}=\frac{1}{2} \sum_{i / j}^{N} A_{i j}
\end{aligned}
$$

$$
\begin{array}{cc}
A_{i j}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) & \begin{array}{l}
k_{i}^{i n}=\sum_{j=1}^{N} A_{i j} \\
k_{j}^{o u t}=\sum_{i=1}^{N} A_{i j} \\
A_{i j} \neq A_{j i} \\
A_{i i}=0
\end{array} \\
L=\sum_{i=1}^{N} k_{i=}^{k_{i n}}=\sum_{j=1}^{N} k_{j}^{\text {out }}=\sum_{i, j}^{N} A_{i j} \\
\end{array}
$$

Real networks are sparse!

The maximum number of links a network of N nodes can have is: $L_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}$

A graph with degree $L=L_{\text {max }}$ is called a complete graph, and its average degree is $<k>=N-1$

Most networks observed in real systems are sparse

$L \ll L_{\text {max }} \quad\langle k\rangle \ll N-1$

WWW (ND Sample):	$\mathrm{N}=325,729 ;$	$\mathrm{L}=1.410^{6}$	$\mathrm{~L}_{\max }=10^{12}$	$<\mathrm{k}>=4.51$
Protein (S. Cerevisiae):	$\mathrm{N}=1,870 ;$	$\mathrm{L}=4,470$	$\mathrm{~L}_{\max }=10^{7}$	$<\mathrm{k}>=2.39$
Coauthorship (Math):	$\mathrm{N}=70,975 ;$	$\mathrm{L}=210^{5}$	$\mathrm{~L}_{\max }=310^{10}$	$<\mathrm{k}>=3.9$
Movie Actors:	$\mathrm{N}=212,250 ;$	$\mathrm{L}=610^{6}$	$\mathrm{~L}_{\max }=1.810^{13}$	$<\mathrm{k}>=28.78$

The adjacency matrix of the yeast protein-protein interaction network, consisting of 2,018 nodes, each representing a yeast protein.

weighted networks

bipartite networks

bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.

Examples

- actor network
- collaboration network
- host-pathogen networks

bipartite networks

Countries Capabilities Products

Countries Products

The Atlas of Economic Complexity

C. Hidalgo

http://atlas.cid.harvard.edu/

bipartite networks

Gene network

DISEASOME PHENOME
Orolaryngeal cander

Disease network

paths

A path is a sequence of nodes in which each node is adjacent to the next one
$P_{i 0, i n}$ of length n between nodes i_{0} and i_{n} is an ordered collection of $n+1$ nodes and n links

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

a.

3
(a) path of length 5
(b) two paths of equal length

distance

The distance (shortest path, geodesic path) between two nodes is defined as the number of edges along the shortest path connecting them. The diameter of a graph is the length of the longest geodesic path between any pair of vertices in the network for which a path actually exists.
*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

paths

N_{ij}, number of paths between any two nodes \boldsymbol{i} and \boldsymbol{j} :

Length $n=1$: If there is a link between i and j, then $\mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{A}_{\mathrm{ij}}=0$ otherwise.
Length $n=2$: If there is a path of length two between i and j, then $A_{i k} A_{\mathrm{kj}}=1$, and $\mathrm{A}_{\mathrm{ik}} \mathrm{A}_{\mathrm{kj}}=0$ otherwise. The number of paths of length 2 :

$$
N_{i j}^{(2)}=\sum_{k=1}^{N} A_{i k} A_{k j}=\left[A^{2}\right]_{i j}
$$

Length n : In general, if there is a path of length n between i and j, then $\mathrm{A}_{\mathrm{ik}} \ldots \mathrm{A}_{\mathrm{i} j}=1$ and $\mathrm{A}_{\mathrm{ik}} \ldots \mathrm{A}_{\mathrm{ij}}=0$ otherwise.
The number of paths of length n between i and j is*

$$
N_{i j}^{(n)}=\left[A^{n}\right]_{i j}
$$

paths

Diameter: $\boldsymbol{d}_{\max }$ the maximum distance between any pair of nodes in the graph.

Average path length/distance, $\langle d>$, for a connected graph: average distance between all pairs of nodes in the network, where $d_{i j}$ is the distance from node i to node j

$$
\langle d\rangle=\frac{1}{2 L_{\max }} \sum_{i, j \neq i} d_{i j}
$$

In an undirected graph $d_{i j}=d_{j i}$, so we only need to count them once: $\langle d\rangle=\frac{1}{L_{\max }} \sum_{i, j>i} d_{i j}$

paths: summary

The path with the shortest length between two nodes
(distance).

paths: summary

Diameter

Average Path Length

The longest shortest path in a graph

The average of the shortest paths for all pairs of nodes.

connectivity

Connected (undirected) graph: any two vertices can be joined by a path. A disconnected graph is made up by two or more connected components.

Largest Component: Giant Component

The rest: Isolates

Bridge: if we erase it, the graph becomes disconnected.

connectivity

The adjacency matrix of a network with several components can be written in a blockdiagonal form, so that nonzero elements are confined to squares, with all other elements being zero:
(a)

(b)

connectivity in directed graphs

Strongly connected directed graph: has a path from each node to every other node and vice versa

- Weakly connected directed graph: it is connected if we disregard the edge directions.

real world networks

Frigyes Karinthy, 1929 Stanley Milgram, 1967

six degrees of separation

Stanley Milgram (1967)

Two targets in Boston and Sharon, MA.

Randomly selected residents of Wichita and Omaha were asked to forward a letter to someone who is most likely to know the target person.

six degrees of separation

Stanley Milgram (1967)

Two targets in Boston and Sharon, MA.

Randomly selected residents of Wichita and Omaha were asked to forward a letter to someone who is most likely to know the target person.

clustering coefficient

The clustering coefficient of a node captures the degree to which the neighbors of a given node link to each other, i.e. what fraction of your neighbors are connected?

clustering coefficient

The clustering coefficient of a node captures the degree to which the neighbors of a given node link to each other, i.e. what fraction of your neighbors are connected?

$$
C_{i}=\frac{2 L_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$C_{i}=1$

$C_{i}=1 / 2$
$C_{i}=0$

clustering coefficient

The degree of clustering of a whole network is captured by the average clustering coefficient, representing the average of C over all nodes $i=1, \ldots, N$

$$
\left\langle C_{i}\right\rangle=\frac{1}{N} \sum_{i} C_{i}
$$

clustering coefficient

the global clustering coefficient measures the total number of closed triangles in a network. Indeed, L_{i} in the previous equation is the number of triangles that node i participates in, as each link between two neighbors of node i closes a triangle.

$$
C_{\Delta}=\frac{3 \times \text { Number Of Triangles }}{\text { Number Of Connected Triples }}
$$

real world networks

- Real world networks are highly clustered
- Average clustering coefficient can have values >0.5
-Triadic closure in social networks is a common phenomenon

measures of centrality

-Degree centrality
-Closeness centrality

- Betweenness centrality
- Eigenvector centrality
- Katz centrality
-Pagerank

betweeness centrality

Betweeness captures a node's brokerage

intuition: how many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

betweeness centrality

$$
C_{B}(i)=\sum_{j<k} g_{j k}(i) / g_{j k}
$$

$g_{j k}=$ \#shortest paths connecting jand k $g_{j k}(i)=\begin{gathered}\text { \#shortest paths connecting } \\ \mathrm{j} \text { and } \mathrm{k} \text { through } \mathrm{i}\end{gathered}$

betweeness centrality

My Facebook graph
Node size is proportional to the degree

Node color is proportional to the betweenness

closeness centrality

Closeness is based on the length of the average shortest path between a node and all other nodes in the network.

It quantifies the reachability of a node.

$$
C_{c}(i)=\left[\sum_{j=1}^{N} d(i, j)\right]^{-1}
$$

Katz centrality

$$
C_{K Z}(i)=\sum_{k=1}^{\infty} \sum_{j=1}^{n} \alpha^{k}\left(A^{k}\right)_{j i}
$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors and also all other nodes in the network that connect to the node through these immediate neighbors. Connections made with distant neighbors are, however, penalized by an attenuation factor

Katz centrality

$$
C_{K Z}(i)=\alpha \sum_{j=1}^{n} A_{i j} C_{K Z}(j)
$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors and also all other nodes in the network that connect to the node through these immediate neighbors. Connections made with distant neighbors are, however, penalized by an attenuation factor

