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Recap last lecture

Models

Erdos-Renyi model
Watts-Strogatz model
Configuration model
Chung-Lu model

Concepts

Importance of scale-freeness

Giant component
Phase transitions




Today’s topics

Models

Barabasi-Albert model
Bianconi-Barabasi model
Link/Copying model

Concepts

Origins of scale-free distributions
Growing networks
Assortativity and correlations
Bonus: Robustness




Network heterogeneity

Where does it come from?
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First ingredient:
Growth/time

WORLD WIDE WEB

1982 1987 1992 1997 2002 2007 2012
YEARS

CITATION NETWORK

1880 1900 1920 1940 1960 1980 2000 2020
YEARS

ACTOR NETWORK

1880 1900 1920 1940 1960 1980 2000 2020

Second ingredient:
Not all links are equally likely!




Network heterogeneity

Microscopic mechanisms for macroscopic observables

In static ensemble models (last lecture) we defined network by constraints
In evolving/growing network, we define growth rules and look for asymptotic stationary behaviour

Barabasi-Albert network model

(1) Networks continuously expand by the addition of new nodes
WWW : addition of new documents GROWTH:

At each timestep we add a new node with m (< 171) links that
connect the new node to m nodes already in the network.

(2) New nodes prefer to link to highly connected nodes. PREFERENTIAL ATTACHMENT:

(WWW : linking to well known sites) the probability that a node connects to a node with k links is
proportional to k.

(k) = ki
l ZI{]

]




Barabasi-Albert model

Degree dynamics

dk. k. ~—
L — mIl(k;) = m l ki =2mt —m 2 oamt

dt ZN_I k. j=1

[
ki(t) —ml| — [/ = — dynamical exponent
L

Barabasi, Albert-Laszl6, Réka Albert, and Hawoong Jeong. "Mean-field theory for scale-free random networks." Physica A: Statistical Mechanics and its
Applications 272.1-2 (1999). 173-187.
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Barabasi-Albert model

Degree distribution: simple derivation
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ki(t) — —
lj
m2t
Plk;(t)<k)=1—Pk;t)>k)=1—P(t; < 73 )
A node /i can come with equal probability any time between t=m,and t, hence:
m 1/p
ti <t (-) == Number of nodes with degree larger than k
There are overall N=my+t~t

So the probability that a random node has degree k or less is:

1/p
P(k) ~ 1 — (ﬁ>
k

oP(ky 1 m'P
ok B kV@p+D

Pr ™~

1
P~ 2mk™ = 5

This Is great but there are errors in the coefficient



Barabasi-Albert model

Rate-equation derivation

Number of degree k nodes attimet: << IN (k,t) >=tP(k,1t)

k k
Number of links added to degree k nodes after the arrival of a new node: - NP(k, t) T = §P(k, t)

2mt
k—1 k
(N +1)P(k,t+1) = NP(k,t) + ——P(k - 1,1) = 5 P(k,t)

k-nodes at time t+1 # k-nodes at time t Gain of k nodes via k-1 to k Loss of k nodes via k to k+1

We do not have k=0, 1,...,m-1 nodes in the network (each node arrives with degree m)
Requires separate equation for degree m nodes.

(N+1)P(m,t+1) = NP(m,t)+1 T;P(m,t)




Barabasi-Albert model

Rate-equation derivation

(N +1)P(k,t+1) = NP(k,t) + == P(k = 1,8) = - P(k,t)
(N+1)P(m,t+1) = NP(m,t)+1 T;P(m, t)
Impose stationarity! P(k,o00) = P(k)
(N +1)P(k,00) — NP(k,00) = P(k,00) = P(k)
k—1 k—1
P(k) = —5—P(k=1) = 3P(k)  P(k) = —P(k—1)
m 2
P(m) =1 5 P(m) — P(m) = o



Barabasi-Albert model

Rate-equation derivation

P(m) = mi—Q
m 2m
Plm+1)= m SP(m) B (m + 2)(m + 3)
- m+1 B 2m(2m + 1)
Plm+2) = e Pt D) = o n + 3)(m + 3)
o om+2 B 2m(2m + 1)
Pim+3) = m+5P(m+2)_ (m 4+ 3)(m +4)(m + 5)
P(k) - 2m(2m + 1) 3

k(k + 1)(k + 2)

Krapivsky, Redner, Leyvraz, PRL 2000, Dorogovtsev, Mendes, Samukhin, PRL 2000, Bollobas et al, Random Struc. Alg. 2001



Barabasi-Albert model
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(a) We generated networks with N=100,000
and m =m=1 (blue), 3 (green), 5 (grey), and 7
(orange). The fact that the curves are parallel
to each other indicates that y is independent
of m and m,. The slope of the purple line is -3,
corresponding to the predicted degree expo-
nent y=3. Inset: (5.11) predicts p,~2m?, hence
p,/2m? should be independent of m. Indeed,
by plotting p /2m? vs. k, the data points shown
in the main plot collapse into a single curve.

(b) The Barabasi-Albert model predicts that
p, is independent of N. To test this we plot p,
for N = 50,000 (blue), 100,000 (green), and
200,000 (grey), with m =m=3. The obtained p,
are practically indistinguishable, indicating
that the degree distribution is stationary, i.e.
independent of time and system size.



Barabasi-Albert model

Necessity of ingredients: growth

m—l—ti—l
P(k) = S e m ek
m




Barabasi-Albert model

Necessity of ingredients: preferential attachment

ok; N k; 1

o N—12t N
OUN — 1) N )

ki(t) = t+Ct2(8-1) ~ —¢
O N

P, : power law (initially) -> Gaussian -> Fully Connected
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Barabasi-Albert model

Necessity of ingredients?

Do we need both growth and preferential attachment?
YEP.



Barabasi-Albert model

Non-linear preferential attachments
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Barabasi-Albert model

Non-linear preferential attachments

[(k) =

04

tzk k“pk(t)

Explicit derivation in Barabasi’s book Sec 5.14

SUBLINEAR

LINEAR

NO PREFERENTIAL
ATTACHMENT

EXPONENTIAL

~ |Int

RANDOM

SUBLINEAR LINEAR
(0<a<1) (a=1)
EXPONENTIAL
|
N(lnf):” ~,)’|
RANDOM

SCALE-FREE

SUPERLINEAR

(k) ~ k*

NETWORK


http://networksciencebook.com/chapter/5#advanced-b-5-14

Barabasi-Albert model

Multiple questions:

- why preferential attachment depends on k?

- Why linearly?

- Global (optimum) versus local (random) mechanisms?



Barabasi-Albert model

Potential local mechanisms: link model

simplest example of a local mechanism
that generates a scale-free network
without preferential attachment

d. NEWNODE

e Growth: At each time step we add a new node
to the network.

o Link Selection: We select a link at random and lacks a built-in IT(k) function.
COnneCt the neW nOde tO One Of the tWO nOdeS Yet, lt generates preferential
at the two ends of the selected link. attachment.

probability gk that the node at the end of a randomly chosen link has degree k

@ =Ckpe Y qp=1
J

C p— ]‘ qk _ kpk E)_(CG-S.S d-egree
< 15 > < L ~ distribution!!!!

Linear in k: pref attachment



Barabasi-Albert model

Potential local mechanisms: copy model

TARGET ! E

CHOOSE TARGET

. NEW NODE

EXISTING
NETWORK

CHOOSE ONE OF THE
OUTGOING LINKS OF TARGET

e Random Connection:. With probability p the new node links to u,
which means that we link to the randomly selected web
document.

e Copying: With probability 1-p we randomly choose an outgoing
link of node u and link the new node to the link’s target. In other
words, the new webpage copies a link of node u and connects
to its target, rather than connecting to node u directly.

1
k) = 2= + — 2%

N 2L

probability of selecting a degree-k node



Barabasi-Albert model

Properties: diameter
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Barabasi-Albert model

Properties: clustering

Node | with degree k_| has a number of triangles:

N N
No= [ di [ aiPG.HPGOPGD
j=1 i=1

. . ki(J ki(J
P(i,3) = mil(k () = m D = 2]
=1 ki(J) mJ
£ 2 N 2 1
using k;(t) =m (t_> =m (‘Z> — P(i,j) = %(ij)_§
i [/
arrival time of node j is tj =j and
the arrival time of node 11s t; =1
m> 2N m (In N)?
N, =—(nN)?* — C= i ~
= g B ) E(N((N)—1) 4 N

Konstantin Klemm, Victor M. Eguiluz,
Growing scale-free networks with small-world behavior, Phys. Rev. E 65, 057102 (2002),

time when node j arrived with

103} RANDOM
’ NETWORK N \,\;
10-4:_ ~1/N .~
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Barabasi-Albert model

Summary

- Power law with exp -3
- Ultrasmall world

- Undirected

- Vanishing clustering

- Does not capture:
- variations in the shape of the degree distribution
- variations in the degree exponent
- size-independent clustering coefficient

- No other realistic methods:
- Link deletion
- Internal links
- Ageing...
- Fithess

Number of Nodes
N=t

Number of Links
N =mt

Average Degree
(ky =2m

Degree Dynamics
k(t)=m (t/t)°

Dynamical Exponent
B=1/2

Degree Distribution

pk"‘ kv

Degree Exponent

V=3

Average Distance
(d) ~ logN/log logN

Clustering Coefficient
(C) ~ (InN)*>/N



Beyond Barabasi-Albert model

The Bianconi-Barabasi fithess model

BA model: first mover advantage!
Can latecomers make it? Fitness model!

akz Uzkz B(ni)
—m . ) — hd
Y Zj 0k ansatz:  k(t,t;,n;) =m <t2>

t +— Bm)
<Z,: nj/fj> = /dnp(n)n/i dtokny(t,to) = /dnp(n)nm1 ~ 00

t— 00 — €
<Z 77jk7j> = Cmt[l o O(t )]EZ(I—maX77 B(n))>0
J

Cmt = Z Ei < Nmag Z Ei =2minmaez  — C < 20maz, C > Mmas
J J

BARABASI-ALBERT

BIANCONI-BARABASI ©

MODEL

MODEL

[1(%;)

LINEAR PLOT

i K

B Zj 1K

LOG-LOG PLOT




Beyond Barabasi-Albert model
Derivation degree distribution

Number of nodes with degree larger than k
m\ €/n
tg <t (—)

; P(k; <k)=1— P(k; >

k) =1




Beyond Barabasi-Albert model

Fitness examples: uniform fitness

L - oeoro = (1+C7)

C




Beyond Barabasi-Albert model

Fitness examples: equal fithess




Beyond Barabasi-Albert model

Limitations and extensions
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BARABASI-ALBERT
MODEL

M(k)~k

y=3

r<r

Scale-free

QUTIAL ATTRACTIVENE
M(k)=A+k

r=r*
Stretched
Exponential

r>r*

Exponential

MODEL CLASS

Static Models

Generative Models

v
v

EXAMPLES

Erdés-Rényi
Watts-Strogatz

Configuration Model
Hidden Parameter Model

Barabasi-Albert Model
Bianconi-Barabasi Model
Initial Attractiveness Model
Internal Links Model

Node Deletion Model
Accelerated Growth Model
Aging Model

CHARACTERISTICS

* N fixed
* p, exponentially bounded
* Static, time independent topologies

* Arbitrary pre-defined p,
* Static, time independent topologies

*p.is determined by the processes
that contribute to the network's
evolution.

*Time-varying network topologies



Introduction to network correlations
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Figure 7.10: Friendship network at a US high school. The vertices in this network represent 470
students at a US high school (ages 14 to 18 years). The vertices are color coded by race as
indicated in the key. Data from the National Longitudinal Study of Adolescent Health [34, 314].



Introduction to network correlations

Homophily: This is not news to sociologists, who have long observed and discussed such divisions.

Assortative: like is associated with like Disassortative: like is associated with not-like




Enumerative assortativity

Given cj class or type of vertex i (1,...,nc = total number of classes), then the total number of edges that
run between vertices of the same type is:

Z o(ci, cj) ZAZ](S Ciy Cj)

edges(i,7)

kK,
However, we want to control for the random expectation of the mixing: 5 Z o 0(cis c)

1 kik;
Q — Y %: Aij o 91 5(67»6])

Modularity: It is strictly less than 1, takes positive values if there are more edges between vertices of the same type
than we would expect by chance, and negative ones if there are less.



Enumerative assortativity

How can we normalise it?

Obtained for full mixing: 1 L. L.
Qmam = — | 2m — Z QZW; 5(61',6]')

2m

Assortativity coefficient

Q Zij (Aij kgr%) 0(¢ci, ¢j)

) @maa ) (Qm — D i szf 5(%%’))



Scalar assortativity

Age (grade)

Zij (A,LJ — kzk]/Qm)xzazj
sz(kz5zj — k’zkj/Zm)xsz

| [



Degree correlations
Zij (A”LJ — krzkj/Qm)kaj
sz(k@523 — kzk’j/Qm)kzkj

Degree assortativity coefficient T =

It can be misleading when:
- complicated behavior of the correlation functions (non-monotonous behavior)
- Pearson coefficient gives a larger weight to the more abundant degree classes

Average nearest neighbour degree

Knmn,i- = k knn — knnz — k/P k/ K
Y 3 K= SRPRIY
JEV(Z ’L,]{ij:k k’



Degree correlations

4

What are the possible scenarios?
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NEUTRAL

Degree correlations

How do we decide what’s expected?
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Degree correlations
Origins:
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Degree Preserving Randomization with Simple Links (R-S)

We apply degree-preserving randomization to the original network and at each step we make sure that we do not permit more than one link between a
pair of nodes. On the algorithmic side this means that each rewiring that generates multi-links is discarded.

Degree Preserving Randomization with Multiple Links (R-M)
For a self-consistency check it is sometimes useful to perform degree-preserving randomization that allows for multiple links between the nodes. On
the algorithmic side this means that we allow each random rewiring, even if it leads to multi-links
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Degree correlations

Origins: real or structural ?
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Recap today’s topics

Models Concepts Next time
Barabasi-Albert model Origins of scale-free distributions Percolation!
Bianconi-Barabasi model Growing networks Spectral properties
Link/Copying model Assortativity and correlations Random Walks

“Robustness”



