## Network theory Part V: errors, attacks and walks

CENTAI


ISI
Foundation

Complexity in Social Systems
AA 2023/2024
Maxime Lucas Lorenzo Dall'Amico

## Recap last lecture

Models

Concepts
Today!

Barabasi-Albert model
Bianconi-Barabasi model
Link/Copying model
Origins of scale-free distributions
Growing networks
Assortativity and correlations
"Robustness"

Percolation!
Random Walks
Spectral properties

## Robustness

Introduction

## Percolation

- What is the expected size of the largest cluster?
- What is the average cluster size?
(a)

(c)

(b)

(d)



Add dot with proba p
(a)

(c)

$\langle s\rangle \sim\left|p-p_{c}\right|^{-\gamma_{p}}$
(b)

(d)

## Robustness

Inverse percolation Remove a fraction $f$ of nodes
Small islands

$0<f<f_{c}$ :
There is a giant

$f>f_{\mathrm{c}}$ :
The lattice breaks into many tiny components.


## Robustness

What it looks like on (random) networks?
When is there a GC?
Internet more robust than lattice


Iff giant component GC, each node in GC must be connected to at least two other nodes on average. Hence, average degree k_i of node i attached to $j$ in GC:

$$
\begin{aligned}
& \left\langle k_{i} \mid i \leftrightarrow j\right\rangle=\sum_{k_{i}} k_{i} P\left(k_{i} \mid i \leftrightarrow j\right)=2 . \\
& P\left(k_{i} \mid i \leftrightarrow j\right)=\frac{P\left(k_{i}, i \leftrightarrow j\right)}{P(i \leftrightarrow j)}=\frac{P\left(i \leftrightarrow j \mid k_{i}\right) p\left(k_{i}\right)}{P(i \leftrightarrow j)} \quad \text { Bayes } \\
& P(i \leftrightarrow j)=\frac{2 L}{N(N-1)}=\frac{\langle k\rangle}{N-1}, \quad P\left(i \leftrightarrow j \mid k_{i}\right)=\frac{k_{i}}{N-1}, \quad \text { No deg corr } \\
& \sum_{k_{i}} k_{i} P\left(k_{i} \mid i \leftrightarrow j\right)=\sum_{k_{i}} k_{i} \frac{P\left(i \leftrightarrow j \mid k_{i}\right) p\left(k_{i}\right)}{P(i \leftrightarrow j)}=\sum_{k_{i}} k_{i} \frac{k_{i} p\left(k_{i}\right)}{\langle k\rangle}=\frac{\sum_{k_{i}} k_{i}^{2} p\left(k_{i}\right)}{\langle k\rangle}
\end{aligned}
$$

(b)


$$
\begin{aligned}
& \begin{array}{l}
\text { Molloy-Reeds criterion (once } \\
\text { again!) }
\end{array} \quad \kappa=\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}>2 . \\
& \text { for Poisson } p_{k} \quad \rightarrow \quad\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle \quad \rightarrow \quad\langle k\rangle>1
\end{aligned}
$$

## Robustness

Random removal: find critical f

$$
f=1-p
$$


-

$$
\begin{aligned}
& 0<f<f_{c}: \\
& \text { There is a giant }
\end{aligned}
$$ component

The problem becomes: does the damaged network still fulfil the Molloy-Reeds?

Initial network: p(k), <k>, <k^2>

## Final network?

Proba that node with degree
k goes to k' with prob

$$
\binom{k}{k^{\prime}} f^{k-k^{\prime}}(1-f)^{k^{\prime}}
$$

$$
k^{\prime}<k
$$

Resulting degree distribution

$$
p^{\prime}\left(k^{\prime}\right)=\sum_{k} p(k)\binom{k}{k^{\prime}} f^{k-k^{\prime}}(1-f)^{k^{\prime}}
$$

## Compute <k> and <k^2> for Molloy Reeds

## Robustness

$$
p_{k^{\prime}}^{\prime}=\sum_{k=k^{\prime}}^{\infty} p_{k}\binom{k}{k^{\prime}} f^{k-k^{\prime}}(1-f)^{k^{\prime}}
$$

Random removal: average degree

$$
\begin{array}{rlrl}
\left\langle k^{\prime}\right\rangle_{f} & =\sum_{k^{\prime}=0}^{\infty} k^{\prime} p_{k^{\prime}}^{\prime} & \left\langle k^{\prime}\right\rangle_{f} & =\sum_{k=0}^{\infty} k \sum_{k=0}^{k} p_{k} \frac{k(k-1)!}{\left(k^{\prime}-1\right)!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}}(1-f)^{k^{\prime-1}}(1-f) \\
& =\sum_{k^{\prime}=0}^{\infty} k^{\prime} \sum_{k=k^{\prime}}^{\infty} p_{k}\left(\frac{k!}{k^{\prime}!\left(k-k^{\prime}\right)!}\right) f^{k-k^{\prime}}(1-f)^{k^{\prime}} & & =\sum_{k=0}^{\infty}(1-f) k p_{k} \sum_{k=0}^{k} \frac{(k-1)!}{\left(k^{\prime}-1\right)!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}}(1-f)^{k^{k-1}} \\
& =\sum_{k^{\prime}=0}^{\infty} \sum_{k^{\prime}=k^{\prime}}^{\infty} p_{k} \frac{k(k-1)!}{\left(k^{\prime}-1\right)!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}}(1-f)^{k^{\prime-1}}(1-f) . & & =\sum_{k=0}^{\infty}(1-f) k p_{k} \sum_{k=0}^{k}\binom{k-1}{k^{\prime}-1} f^{k-k^{\prime}}(1-f)^{k^{\prime-1}} \\
& =\sum_{k=0}^{\infty}(1-f) k p_{k} \quad \begin{array}{c}
\text { Sum of binomial over all } \\
\text { possibilities }=1
\end{array} \\
\sum_{k=0}^{\infty} \sum_{k=k^{\prime}}^{\infty}=\sum_{k=0}^{\infty} \sum_{k=0}^{k} . &
\end{array}
$$



## Robustness

$$
p_{k^{\prime}}^{\iota_{1}}=\sum_{k=k^{\prime}}^{\infty} p_{k}\binom{k}{k_{\sigma}^{\prime}} f^{f^{k}-k}(1-f)^{k^{\prime}} .
$$

Random removal: average degree

$$
\begin{aligned}
\left\langle k^{\prime 2}\right\rangle_{f} & =\left\langle k^{\prime}\left(k^{\prime}-1\right)+k^{\prime}\right\rangle_{f} & \left\langle k^{\prime}\left(k^{\prime}-1\right)\right\rangle_{f} & =\sum_{k^{\prime}=0}^{\infty} k^{\prime}\left(k^{\prime}-1\right) p_{k^{\prime}}^{\prime} \\
& =\left\langle k^{\prime}\left(k^{\prime}-1\right)\right\rangle_{f}+\left\langle k^{\prime}\right\rangle_{f} & & =\sum_{k^{\prime}=0}^{\infty} k^{\prime}\left(k^{\prime}-1\right) \sum_{k=k^{\prime}}^{\infty} p_{k}\binom{k}{k^{\prime}} f^{k-k^{\prime}(1-f)^{k^{\prime}}} \\
& =\sum_{k^{\prime}=0}^{\infty} k^{\prime}\left(k^{\prime}-1\right) p_{k^{\prime}}^{\prime}+\left\langle k^{\prime}\right\rangle_{f} . & &
\end{aligned}
$$

## Robustness

Random removal: average degree

$$
\begin{aligned}
\left\langle k^{\prime 2}\right\rangle_{f} & =\left\langle k^{\prime}\left(k^{\prime}-1\right)+k^{\prime}\right\rangle_{f} \\
& =\left\langle k^{\prime}\left(k^{\prime}-1\right)\right\rangle_{f}+\left\langle k^{\prime}\right\rangle_{f} \\
& =(1-f)^{2}\langle k(k-1)\rangle+(1-f)\langle k\rangle \\
& =(1-f)^{2}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)+(1-f)\langle k\rangle \\
& =(1-f)^{2}\left\langle k^{2}\right\rangle-(1-f)^{2}\langle k\rangle+(1-f)\langle k\rangle \\
& =(1-f)^{2}\left\langle k^{2}\right\rangle-\left(-f^{2}+2 f-1+1-f\right)\langle k\rangle \\
& =(1-f)^{2}\left\langle k^{2}\right\rangle+f(1-f)\langle k\rangle .
\end{aligned}
$$

$$
\begin{array}{r}
\left\langle k^{\prime}\right\rangle_{f}=(1-f)\langle k\rangle \\
\left\langle k^{\prime 2}\right\rangle_{f}=(1-f)^{2}\left\langle k^{2}\right\rangle+f(1-f)\langle k\rangle \\
\kappa=\frac{\left\langle k^{\prime 2}\right\rangle_{f}}{\left\langle k^{\prime}\right\rangle_{f}}=2 .
\end{array}
$$

So, for any Pk, with random removal

Only depends on 1st and 2nd moment of $p(k)$

$$
\underset{\substack{\text { and } \\ \mathrm{k})}}{f_{\mathrm{c}}=1-\frac{1}{\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1}}
$$

$$
f_{\mathrm{c}}^{\mathrm{ER}}=1-\frac{1}{\langle k\rangle} .
$$

## Robustness

Scale-free networks?

$$
\begin{aligned}
& \left\langle k^{m}\right\rangle=(\gamma-1) k_{\min }^{\gamma-1} \int_{k_{\min }}^{k_{\max }} k^{m-\gamma} d k=\frac{(\gamma-1)}{(m-\gamma+1)} k_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{k_{\min }}^{k_{\max }} . \\
& \left\langle k^{m}\right\rangle=\frac{(\gamma-1)}{(m-\gamma+1)} k_{\min }^{\gamma-1}\left[k_{\max }^{m-\gamma+1}-k_{\min }^{m-\gamma+1}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \kappa=\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\frac{(2-\gamma)}{(3-\gamma)} \frac{k_{\max }^{3-\gamma}-k_{\min }^{3-\gamma}}{k_{\max }^{2-\gamma}-k_{\min }^{2-\gamma}}, \\
& f_{\mathrm{c}}=\left\{\begin{array}{cc}
1-\frac{1}{\gamma-2} k_{\text {min }}^{\gamma-2} k_{\text {max }}^{3-\gamma}-1 & 2<\gamma<3 \\
1-\frac{1}{\frac{\gamma-2}{\gamma-3} k_{\text {min }}-1} & \gamma>3
\end{array}\right.
\end{aligned}
$$



Removing lots of small nodes in SF

## Attacks

Many types of attacks...

- Degree
- Betweenness
- Link-based analogues
- Cascades...


(d) SCIEntific collaboration




## Attacks

## Critical threshold

## Hub removal

$$
\begin{gathered}
f=\int_{k_{\max }^{\prime}}^{k_{\max }} p_{k} d k=\frac{\gamma-1}{\gamma-1} \frac{k_{\max }^{\prime}-\gamma+1}{k_{\min }^{-\gamma+1}-k_{\max }^{-\gamma+1}} . \\
f=\left(\frac{k_{\max }^{\prime}}{k_{\min }}\right)^{-\gamma+1}, \quad k_{\max }^{\prime} \gg k_{\max }^{\prime} \gg k_{\min }=k_{\min } f^{\frac{1}{1-\gamma}} . \\
\tilde{f}=f^{\frac{2-\gamma}{1-\gamma}} .
\end{gathered}
$$

## Link removal $\quad k_{\text {max }}$

$$
\tilde{f}=\frac{\int_{k_{\max }^{\prime}} k p_{k} d k}{\langle k\rangle}=\frac{1}{\langle k\rangle} c \int_{k_{\max }^{\prime}}^{k_{\max }} k^{-\gamma+1} d k
$$

$$
=\frac{1}{\langle k\rangle} \frac{1-\gamma}{2-\gamma} \frac{k_{\max }^{\prime-\gamma+2}-k_{\max }^{-\gamma+2}}{k_{\min }^{-\gamma+1}-k_{\max }^{-\gamma+2}} .
$$

$$
\langle k\rangle=\frac{\gamma-1}{\gamma-2} k_{\text {min }}
$$

$$
\tilde{f}=\left(\frac{k_{\max }^{\prime}}{k_{\min }}\right)^{-\gamma+2}
$$

## Attacks

## Critical threshold

$$
\kappa=\frac{2-\gamma}{3-\gamma} \frac{k_{\min }^{3-\gamma} f^{(3-\gamma) /(1-\gamma)}-k_{\min }^{3-\gamma}}{k_{\min }^{2-\gamma}} f^{(2-\gamma)(1-\gamma)}-k_{\min }^{2-\gamma}=\frac{2-\gamma}{3-\gamma} k_{\min } \frac{f^{(3-\gamma)(1-\gamma)}-1}{f^{(2-\gamma)(1-\gamma)}-1} .
$$

$$
f_{\mathrm{c}}^{\frac{2-\gamma}{1-\gamma}}=2+\frac{2-\gamma}{3-\gamma} k_{\min }\left(f_{c}^{\frac{3-\gamma}{1-\gamma}}-1\right)
$$



## Errors and attacks

## Real networks

## Published: 27 July 2000

Error and attack tolerance of complex networks
Réka Albert, Hawoong Jeong \& Albert-László Barabási $\boxminus$
Nature 406, 378-382 (2000) | Cite this article
43k Accesses $\mathbf{5 5 0 5}$ Citations $\mid \mathbf{7 5}$ Altmetric $\mid$ Metrics

| NETWORK | RANDOM FAILURES <br> (REAL NETWORK) |
| :--- | :---: |
| Internet | 0.92 |
| WWW | 0.88 |
| Power Grid | 0.61 |
| Mobile-Phone Call | 0.78 |
| Email | 0.92 |
| Science Collaboration | 0.92 |
| Actor Network | 0.98 |
| Citation Network | 0.96 |
| E. Coli Metabolism | 0.88 |
| Yeast Protein Interactions | 0 |

RANDOM FAILURES
0.84
0.85
0.63
0.68
0.69
0.88
0.99
0.95
0.90
0.66
(RANDOMIZED NETWORK

ATTACK (REAL NETWORK)
0.16 0.12 0.20 0.20 0.04 0.27 0.55 0.76 0.49 0.06


## Cascades

## Observations






| SOURCE | EXPONENT | CASCADE |
| :--- | :--- | :--- |
| Power grid (North America) | 2.0 | Power |
| Power grid (Sweden) | 1.6 | Energy |
| Power grid (Norway) | 1.7 | Power |
| Power grid (New Zealand) | 1.6 | Energy |
| Power grid (China) | 1.8 | Energy |
| Twitter Cascades | $\mathbf{1 . 7 5}$ | Retweets |
| Earthquakes | 1.67 | Seismic Wave |

$p(s) \sim s^{-\alpha}$,
(b)

(c)


Avalance exponent
"Hard" Model

(c)

(d)


Figure 8.20
Failure Propagation Model

## Cascades

## Easier model

(a)

(b)

(d)

SUBCRITICAL


SUPERCRITICAL
(e)


The branching model can be solved analytically, allowing us to determine the avalanche size distribution for an arbitrary $p_{k}$. If $p_{k}$ is exponentially bounded, e.g. it has an exponential tail, the calculations predict $\alpha=$ $3 / 2$. If, however, $p_{k}$ is scale-free, then the avalanche exponent depends on the power-law exponent $\gamma$, following (Figure 8.22) [32, 33]

$$
\alpha=\left\{\begin{array}{rc}
3 / 2, & \gamma \geq 3 \\
\gamma /(\gamma-1), & 2<\gamma<3 .
\end{array}\right.
$$



Figure 8.22
The Avalanche Exponent

## Pause

## Walks in networks

- Simple process, well studied in finite dimensional lattices
- Simplest way to explore or search in a network
- Basic element of diffusion processes
- Basis of PageRank


Hypothesis $=$ statistical equivalence of nodes with the same degree
$\begin{gathered}\text { Degree-block } \\ \text { Variables }\end{gathered} W_{k}=\frac{1}{N_{k}} \sum_{i \mid k_{i}=k} W_{i} \quad \begin{aligned} & \text { Diffusion } \\ & \text { equation }\end{aligned} \quad \partial_{t} W_{k}(t)=-r W_{k}(t)+k \sum_{k^{\prime}} p\left(k^{\prime} \mid k\right) \frac{r}{k^{\prime}} W_{k^{\prime}}(t)$

## Walks in networks

$\partial_{t} W_{k}(t)=-r W_{k}(t)+k \sum_{k^{\prime}} p\left(k^{\prime} \mid k\right) \frac{r}{k^{\prime}} W_{k}(t)$
Uncorr. networks $\quad p\left(k^{\prime} \mid k\right)=\frac{k^{\prime} p\left(k^{\prime}\right)}{\langle k\rangle}$

Finall, probabailiyto find o one walker in degre e k: $\quad p_{k}=\frac{W_{k}}{W}=\frac{k}{\langle k\rangle} \frac{1}{N} \propto k$

## Walks in (directed) networks

## PageRank

Previous ranking: crawl around a starting page and return the ranking based on the \#matches to word query, index, etc
The PageRank algorithm: major breakthrough based on idea that ranking depends on network topology
"Google" defines the importance of each document by a combination of the probability that a random walker surfing the web will visit that document, and some heuristics based in the text disposition, [cit. Barrat/Barth/Vesp]

Probability that a random walker will visit page i:

$$
\begin{aligned}
& \text { ill visit page i: } \\
& P_{R}(i)=\frac{q}{N}+(1-q) \sum_{j} x_{i j} \frac{P_{R}(j)}{k_{\text {out }, j}}, ~
\end{aligned}
$$

$$
q=\text { damping / teleportation }
$$

x_ij: adjacency

Degree-block variables $\quad k=\left(k_{i n}, k_{\text {out }}\right)$

$$
P_{R}(k)=\frac{1}{N_{k}} \sum_{i \in k} P_{R}(i) \quad P_{R}(k)=\frac{q}{N}+\frac{(1-q)}{N_{k}} \sum_{i \in k} \sum_{k^{\prime}} \frac{1}{k_{\text {out }}^{\prime}} \sum_{j \in k^{\prime}} x_{i j} P_{R}(j)
$$

Mean-field approx: $P_{R}(j)=P(k)$

$$
P_{R}(k)=\frac{q}{N}+\frac{(1-q)}{N_{k}} \sum_{k^{\prime}} \frac{P_{R}\left(k^{\prime}\right)}{k_{\text {out }}^{\prime}} \sum_{i \in k} \sum_{j \in k^{\prime}} x_{i j}=\frac{q}{N}+\frac{(1-q)}{N_{k}} \sum_{k^{\prime}} \frac{P_{R}\left(k^{\prime}\right)}{k_{\text {out }}^{\prime}} E_{k^{\prime} \rightarrow k}
$$

## Walks in networks

## PageRank

Uncorr. networks

$$
P_{\text {in }}\left(\mathbf{k}^{\prime} \mid \mathbf{k}\right)=\frac{k_{\text {out }}^{\prime} P\left(\mathbf{k}^{\prime}\right)}{\left\langle k_{\text {in }}\right\rangle}
$$

$P_{R}(k)=\frac{q}{N}+(1-q) \frac{k_{i n}}{\left\langle k_{i n}\right\rangle} \sum_{k^{\prime}} P_{R}\left(k^{\prime}\right) P\left(k^{\prime}\right)=\frac{q}{N}+\frac{(1-q)}{N} \frac{k_{i n}}{\left\langle k_{i n}\right\rangle}$
Data from the Web

PageRank: also to quantify importance of scientific papers


## Walks in networks

## Laplacian

$$
\begin{array}{ll}
\Delta \phi(v)=\sum_{w \in v_{(v)}}(\phi(w)-\phi(v)) . \quad \mathbf{L}=\mathbf{D}-\mathbf{X} \quad D_{i j}=\delta_{i j} k_{i} \quad X_{i j}=\mathbf{a d j} \quad & L_{i i}=k_{i} \\
& L_{i j}=-x_{i j}
\end{array}
$$


$S_{4}$

$$
L\left(S_{4}\right)=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

## Undirected graphs:

- on infinite square lattice == continuous Laplacian
- L symmetric $==>$ spectrum is positive semidefinite $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{N}$
- The multiplicity of $O$ as an eigenvalue of $L$ is equal to the number of connected components of the graph.
- The second smallest eigenvalue $\lambda_{1}$ is called the algebraic connectivity.

It is non-zero only if the graph is formed of a single connected component.

## Walks in networks

## Laplacian and return times

$$
\partial_{t} p\left(i, t \mid i_{0}, 0\right)=-\sum_{j} L_{i j} p\left(j, t \mid i_{0}, 0\right) \quad p\left(i, 0 \mid i_{0}, 0\right)=\delta_{i i_{0}} \quad \sum_{i} L_{i j}=0 \quad \rightarrow \quad \sum_{i} p\left(i, t \mid i_{0}, 0\right)=1
$$

Spectral density
$\rho(\lambda)=\left\langle\frac{1}{N} \sum_{i=1}^{N} \delta\left(\lambda-\lambda_{i}\right)\right\rangle$

Laplace transform
$\tilde{p}_{i i_{0}}(s)=\int_{0}^{\infty} \mathrm{d} t e^{-s t} p\left(i, t \mid i_{0}, 0\right)$.

Integration by parts
$\int_{0}^{\infty} \mathrm{d} t e^{-s t} \partial_{t} p\left(i, t \mid i_{0}, 0\right)=-p\left(i, 0 \mid i_{0}, 0\right)+s \tilde{p}_{i i_{0}}(s)=s \tilde{p}_{i i_{0}}(s)-\delta_{i i_{0}}$

Finally, rewrite as

$$
s \tilde{p}_{i i_{0}}(s)-\delta_{i i_{0}}=-\sum_{j} L_{i j} \tilde{p}_{j i_{0}}(s) \quad \sum_{j}\left(s \delta_{i j}+L_{i j}\right) \tilde{p}_{j i_{0}}(s)=\delta_{i i_{0}} .
$$

Return time, definition

$$
p_{0}(t)=\left\langle\frac{1}{N} \sum_{i_{0}} p\left(i_{0}, t \mid i_{0}, 0\right)\right\rangle . \quad \begin{aligned}
& \text { Laplace transform } \\
& \tilde{p}_{0}(s)=\left\langle\frac{1}{N} \sum_{i_{0}} \tilde{p}_{i_{0} i_{0}}(s)\right\rangle=\left\langle\frac{1}{N} \operatorname{Tr} \tilde{\mathbf{p}}(s)\right\rangle,
\end{aligned}
$$

$$
\tilde{p}_{0}(s)=\left\langle\frac{1}{N} \sum_{i} \frac{1}{s+\lambda_{i}}\right\rangle
$$

$$
\left.p_{0}(t)=\int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}{\mathrm{~d} s \mathrm{e}^{t s}}_{\text {Laplace inverse transform }}^{N} \sum_{j} \frac{1}{s+\lambda_{j}}\right\rangle=\left\langle\frac{1}{N} \sum_{j} \mathrm{e}^{-\lambda_{j} t}\right\rangle, \quad \quad p_{0}(t)=\int_{0}^{\infty} \mathrm{d} \lambda \mathrm{e}^{-\lambda t} \rho(\lambda)
$$

## Searching in networks



Finds shortest path, generated traffic: traffic $\propto N$


Not shortest path, less traffic: $T \propto N^{0.79} \quad \gamma=2.1$

## What about this?

Fig. 8.4. Schematic comparison of various searching strategies to find the target vertex $t$, starting from the source $s$. A, Broadcast search; B, Random walk; C, Degree-biased strategy. The broadcast search finds the shortest path, at the expense of high traffic.

## Searching in small world networks

- Start from a D-dimensional hypercubic lattice:
- add a link node i , and connect to node j with at geographical distance $r_{i j}$ with prob $\sim r^{-\alpha}$,
- Each node knows its own position and that of its neighbours.
- Greedy search process:
- a message has to be sent to a certain target node $t$ whose geographical position is known.
- A node i receiving the message forwards it to the neighbor node j geographically closest to the target $\left(\min r_{j t}\right)$



Kleinberg (2000a)
if $\alpha=D$, the delivery time scales as $\log ^{\wedge} 2(\mathrm{~N})$ with the size N of the network.

What is the dimension then of real networks? Are they navigable?
Barrat/Barth/Vesp Chapter 8

## What did we talk about today?

- Formalism of robustness
- Errors vs attacks
- Cascades (qualitatively)
- Walks and random walkers
- Pagerank
- Introduction to Laplacian


## What didn't we talk about today?

- Math-y Cascades
- How to engineer robustness?
- Deeper Laplacian spectral theory
- Calculations of the spectral densities
- Specific search results
- Dynamical systems in general

