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PERCOLATION THEORY
SECTION 8.2

The removal of a single node has only limited impact on a network’s 
integrity (Figure 8.3a). The removal of several nodes, however, can break a 
network into several isolated components (Figure 8.3d). Obviously, the more 
nodes we remove, the higher are the chances that we damage a network, 
prompting us to ask: How many nodes do we have to delete to fragment a 
network into isolated components? For example, what fraction of Internet 
routers must break down so that the Internet turns into clusters of com-
puters that are unable to communicate with each other? To answer these 
questions, we must first familiarize ourselves with the mathematical un-
derpinnings of network robustness, offered by percolation theory.

Percolation
Percolation theory is a highly developed subfield of statistical physics 
and mathematics [2, 3, 4, 5]. A typical problem addressed by it is illus-
trated in Figure 8.4a,b, showing a square lattice, where we place pebbles 
with probability p at each intersection. Neighboring pebbles are con-
sidered connected, forming clusters of size two or more. Given that the 
position of each pebble is decided by chance, we ask:

•  What is the expected size of the largest cluster?
•  What is the average cluster size?

Obviously, the higher is p, the larger are the clusters. A key prediction 
of percolation theory is that the cluster size does not change gradu-
ally with p. Rather, for a wide range of p the lattice is populated with 
numerous tiny clusters (Figure 8.4a). If p approaches a critical value pc, 
these small clusters grow and coalesce, leading to the emergence of a 
large cluster at pc. We call this the percolating cluster as it reaches the 
end of the lattice. In other words, at pc we observe a phase transition 
from many small clusters to a percolating cluster that percolates the 
whole lattice (Figure 8.4b). 

To quantify the nature of this phase transition, we focus on three quan-
tities:

NETWORK ROBUSTNESS

The gradual fragmentation of a small network 
following the breakdown of its nodes. In each 
panel we remove a different node (highlight-
ed with a green circle), together with its links. 
While the removal of the first node has only 
limited impact on the network’s integrity, the 
removal of the second node isolates two small 
clusters from the rest of the network. Finally, 
the removal of the third node fragments the 
network, breaking it into five non-communi-
cating clusters of sizes s = 2, 2, 2, 5, 6.

Figure 8.3

The Impact of Node Removal
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•  Average Cluster Size: ࢭsࢮ 
According to percolation theory the average size of all finite clusters 
follows

In other words, the average cluster size diverges as we approach pc

(Figure 8.4c).

•   Order Parameter: P∞

The probability P∞ that a randomly chosen pebble belongs to the larg-
est cluster follows

Therefore as p decreases towards pc the probability that a pebble be-
longs to the largest cluster drops zero (Figure 8.4d).

•   Correlation Length: ȟ  
The mean distance between two pebbles that belong to the same clus-
ter follows

A classical problem in percolation theory ex-
plores the random placement with probability 
p of pebbles on a square lattice.

(a) For small p most pebbles are isolated. In 
this case the largest cluster has only three 
nodes, highlighted in purple.

(b) For large p most (but not all) pebbles be-
long to a single cluster, colored purple. This is 
called the percolating cluster, as it spans the 
whole lattice (see also Figure 8.6).

(c) The average cluster size, ࢭsࢮ, in function of 
p. As we approach pc from below, numerous 
small clusters coalesce and ࢭsࢮ diverges, fol-
lowing (8.1). The same divergence is observed 
above pc, where to calculate ࢭsࢮ� we remove 
the percolating cluster from the average. The 
same exponent ਠp characterizes the diver-
gence on both sides of the critical point.

(d) A schematic illustration of the p−depen-
dence of the probability P∞ that a pebble be-
longs to the largest connected component. For 
p < pc all components are small, so P∞ is zero. 
Once p reaches pc a giant component emerges. 
Consequently beyond pc there is a finite prob-
ability that a node belongs to the largest com-
ponent, as predicted by (8.2).

Figure 8.4
Percolation
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giant component (Figure 8.5): P∞ is nonzero under fc, but it drops to zero as 
we approach fc. The critical exponents characterizing this breakdown, Ȗp, 
ȕp, Ȟ, are the same as those encountered in (8.1)-(8.3). Indeed, the two pro-
cesses can be mapped into each other by choosing f = 1 − p. 

What, however, if the underlying network is not as regular as a square lat-
tice? As we will see in the coming sections, the answer depends on the pre-
cise network topology. Yet, for random networks the answer continues to 
be provided by percolation theory: Random networks under random node 
failures share the same scaling exponents as infinite-dimensional perco-
lation. Hence the critical exponents for a random network are Ȗp = 1, ȕp = 1 
and Ȟ = 1/2, corresponding to the d > 6 percolation exponents encountered 
earlier. The critical exponents for a scale-free network are provided in AD-
VANCED TOPICS 8.A.

In summary, the breakdown of a network under random node removal 
is not a gradual process. Rather, removing a small fraction of nodes has  
only limited impact on a network’s integrity. But once the fraction of re-
moved nodes reaches a critical threshold, the network abruptly breaks into 
disconnected components. In other words, random node failures induce a 
phase transition from a connected to a fragmented network. We can use 
the tools of percolation theory to characterize this transition in both reg-
ular and in random networks. For scale-free networks key aspects of the 
described phenomena change, however, as we discuss in the next section.

NETWORK ROBUSTNESS

The consequences of node removal are ac-
curately captured by the inverse of the per-
colation process discussed in Figure 8.4. We 
start from a square lattice, that we view as a 
network whose nodes are the intersections. 
We randomly select and remove an f fraction 
of nodes and measure the size of the largest 
component formed by the remaining nodes. 
This size is accurately captured by P∞, which 
is the probability that a randomly selected 
node belongs to the largest component. The 
observed networks are shown on the bottom 
panels. Under each panel we list the charac-
teristics of the corresponding phases.

Figure 8.5
Network Breakdown as Inverse Percolation
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BOX 8.1
From Forest Fires to Percolation Theory
 
We can use the spread of a fire in a forest to illustrate the basic con-
cepts of percolation theory. Let us assume that each pebble in Figure 
8.4a,b is a tree and that the lattice describes a forest. If a tree catch-
es fire, it ignites the neighboring trees; these, in turn ignite their 
neighbors. The fire continues to spread until no burning tree has a 
non-burning neighbor. We must therefore ask: If we randomly ignite 
a tree, what fraction of the forest burns down? And how long it takes 
the fire to burn out? 

The answer depends on the tree density, controlled by the parameter 
p. For small p the forest consists of many small islands of trees (p = 
0.55, Figure 8.6a), hence igniting any tree will at most burn down one 
of these small islands. Consequently, the fire will die out quickly. For 
large p most trees belong to a single large cluster, hence the fire rapid-
ly sweeps through the dense forest (p = 0.62, Figure 8.6c). 

The simulations indicate that there is a critical pc at which it takes ex-
tremely long time for the fire to end. This pc is the critical threshold 
of the percolation problem. Indeed, at p = pc the giant component just 
emerges through the union of many small clusters (Figure 8.6b). Hence 
the fire has to follow a long winding path to reach all trees in the loose-
ly connected clusters, which can be rather time consuming.

The emergence of the giant component 
as we change the occupation probability 
p. Each panel corresponds to a different p 
in the vicinity of pc shown for a lattice of 
250x250 sites. The largest cluster is colored 
black. For p < pc the largest cluster is tiny, 
as seen in (a). If this is a forest and the peb-
bles are trees, any fire can at most consume 
only a small fraction of the trees, burning 
out quickly. Once p reaches pc0.593ݖ, shown 
on (b), the largest cluster percolates the 
whole lattice and the fire can reach many 
trees, burning slowly through the forest. In-
creasing p beyond pc connects more pebbles 
(trees) to the largest component, as seen for 
p = 0.62 on (c). Hence, the fire can sweep 
through the forest, burning out quickly 
again.

Figure 8.6
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Robustness
What it looks like on (random) networks?                                  When is there a GC? 
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ROBUSTNESS OF
SCALE-FREE NETWORKS

SECTION 8.3

Percolation theory focuses mainly on regular lattices, whose nodes 
have identical degrees, or on random networks, whose nodes have compa-
rable degrees. What happens, however, if the network is scale-free? How do 
the hubs affect the percolation transition?  

To answer these questions, let us start from the router level map of the 
Internet and randomly select and remove nodes one-by-one. According to 
percolation theory once the number of removed nodes reaches a critical 
value fc, the Internet should fragment into many isolated subgraphs (Figure 
8.5). The simulations indicate otherwise: The Internet refuses to break apart 
even under rather extensive node failures. Instead the size of the largest 
component decreases gradually, vanishing only in the vicinity of f = 1 (Fig-
ure 8.7a). This means that the network behind the Internet shows an unusu-
al robustness to random node failures: we must remove all of its nodes to 
destroy its giant component. This conclusion disagrees with percolation on 
lattices, which predicts that a network must fall apart after the removal of 
a finite fraction of its nodes.

The behavior observed above is not unique to the Internet. To show this 
we repeated the above measurement for a scale-free network with degree 
exponent Ȗ�= 2.5, observing an identical pattern (Figure 8.7b): Under ran-
dom node removal the giant component fails to collapse at some finite fc, 
but  vanishes only gradually near f = 1 (Online Resource 8.1). This hints that 
the Internet's observed robustness is rooted in its scale-free topology. The 
goal of this section is to uncover and quantify the origin of this remarkable 
robustness.

NETWORK ROBUSTNESS

Figure 8.7
Robustness of Scale-free Networks

(a) The fraction of Internet routers that belong 
to the giant component after an f fraction of 
routers are randomly removed. The ratio 
P∞( f)/P∞(0) provides the relative size of the gi-
ant component. The simulations use the rout-
er level Internet topology of Table 4.1.

(b) The fraction of nodes that belong to the 
giant component after an f fraction of nodes 
are removed from a scale-free network with ਠ 
= 2.5, N = 10,000 and kmin = 1.

The plots indicate that the Internet and in 
general a scale-free network do not fall apart 
after the removal of a finite fraction of nodes. 
We need to remove almost all nodes (i.e. fc=1) 
to fragment these networks.
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SECTION 8.11

The purpose of this section is to derive the Molloy-Reed criterion, which 
allows us to calculate the percolation threshold of an arbitrary network 
[6]. For a giant component to exist each node that belongs to it must be 
connected to at least two other nodes on average (Figure 8.8). Therefore, the 
average degree ki of a randomly chosen node i that is part of the giant com-
ponent should be at least 2. Denote with P(ki ȕ i ļ j) the conditional proba-
bility that a node in a network with degree ki is connected to a node j that 
is part of the giant component. This conditional probability allows us to 
determine the expected degree of node i as [51]

In other words, ࢭki ȕ i ļ jࢮ should be equal or exceed two, the condition 
for node  i to be part of the giant component. We can write the probability 
appearing in the sum (8.26) as

where we used Bayes’ theorem in the last term. For a network with degree 
distribution pk, in the absence of degree correlations, we can write

which express the fact that we can choose between N − 1 nodes to link to, 
each with probability 1/(N − 1) and that we can try this ki times. We can now 
return to (8.26), obtaining

With that we arrive at the Molloy-Reed criterion (8.4), providing the con-
dition to have a giant component as

ADVANCED TOPICS 8.B
MOLLOY-REED CRITERION

NETWORK ROBUSTNESS
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each with probability 1/(N − 1) and that we can try this ki times. We can now 
return to (8.26), obtaining

With that we arrive at the Molloy-Reed criterion (8.4), providing the con-
dition to have a giant component as

ADVANCED TOPICS 8.B
MOLLOY-REED CRITERION

NETWORK ROBUSTNESS

(8.26)

(8.27)

(8.28)

(8.29)

�ki�i� j� =�
ki

kiP(ki�i� j) = 2

P(ki�i� j) = P(ki ,i� j)
P(i� j)

= P(i� j�ki )p(ki )
P(i� j)

P(i� j) = 2L
N(N �1)

= �k�
N �1

P(i� j�ki ) =
ki

N �1

�
ki

kiP(ki�i� j) =
ki
�ki

P(i� j�ki )p(ki )
P(i� j)

=
ki
�ki

ki p(ki )
�k�

=
�
ki

ki
2p(ki )

�k�

� = �k2 �
�k�

> 2 (8.30)

.

,

,

.

,

40

SECTION 8.11

The purpose of this section is to derive the Molloy-Reed criterion, which 
allows us to calculate the percolation threshold of an arbitrary network 
[6]. For a giant component to exist each node that belongs to it must be 
connected to at least two other nodes on average (Figure 8.8). Therefore, the 
average degree ki of a randomly chosen node i that is part of the giant com-
ponent should be at least 2. Denote with P(ki ȕ i ļ j) the conditional proba-
bility that a node in a network with degree ki is connected to a node j that 
is part of the giant component. This conditional probability allows us to 
determine the expected degree of node i as [51]

In other words, ࢭki ȕ i ļ jࢮ should be equal or exceed two, the condition 
for node  i to be part of the giant component. We can write the probability 
appearing in the sum (8.26) as
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distribution pk, in the absence of degree correlations, we can write

which express the fact that we can choose between N − 1 nodes to link to, 
each with probability 1/(N − 1) and that we can try this ki times. We can now 
return to (8.26), obtaining
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f = 1-p 

8 PERCOLATION THEORY

giant component (Figure 8.5): P∞ is nonzero under fc, but it drops to zero as 
we approach fc. The critical exponents characterizing this breakdown, Ȗp, 
ȕp, Ȟ, are the same as those encountered in (8.1)-(8.3). Indeed, the two pro-
cesses can be mapped into each other by choosing f = 1 − p. 

What, however, if the underlying network is not as regular as a square lat-
tice? As we will see in the coming sections, the answer depends on the pre-
cise network topology. Yet, for random networks the answer continues to 
be provided by percolation theory: Random networks under random node 
failures share the same scaling exponents as infinite-dimensional perco-
lation. Hence the critical exponents for a random network are Ȗp = 1, ȕp = 1 
and Ȟ = 1/2, corresponding to the d > 6 percolation exponents encountered 
earlier. The critical exponents for a scale-free network are provided in AD-
VANCED TOPICS 8.A.

In summary, the breakdown of a network under random node removal 
is not a gradual process. Rather, removing a small fraction of nodes has  
only limited impact on a network’s integrity. But once the fraction of re-
moved nodes reaches a critical threshold, the network abruptly breaks into 
disconnected components. In other words, random node failures induce a 
phase transition from a connected to a fragmented network. We can use 
the tools of percolation theory to characterize this transition in both reg-
ular and in random networks. For scale-free networks key aspects of the 
described phenomena change, however, as we discuss in the next section.

NETWORK ROBUSTNESS

The consequences of node removal are ac-
curately captured by the inverse of the per-
colation process discussed in Figure 8.4. We 
start from a square lattice, that we view as a 
network whose nodes are the intersections. 
We randomly select and remove an f fraction 
of nodes and measure the size of the largest 
component formed by the remaining nodes. 
This size is accurately captured by P∞, which 
is the probability that a randomly selected 
node belongs to the largest component. The 
observed networks are shown on the bottom 
panels. Under each panel we list the charac-
teristics of the corresponding phases.

Figure 8.5
Network Breakdown as Inverse Percolation
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The problem becomes: does the damaged network still fulfil the Molloy-Reeds?
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining

NETWORK ROBUSTNESS

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.
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SECTION 8.12

The purpose of this section is to derive (8.7), that provides the critical 
threshold for random node removal [7, 51]. The random removal of an f 
fraction of nodes has two consequences:

•   It alters the degree of some nodes, as nodes that were previously con-
nected to the removed nodes will lose some links [k ĺ k' ≤ k].

•  Consequently, it changes the degree distribution, as the neighbors of 
the missing nodes will have an altered degree [pk ĺ p'k']. 

To be specific, after we randomly remove an f fraction of nodes, a node 
with degree k becomes a node with degree  k' with probability

The first f -dependent term in (8.31) accounts for the fact that the select-
ed node lost (k − k')  links, each with probability f; the next term accounts 
for the fact that node removal leaves k' links untouched, each with proba-
bility (1 − f).

The probability that we have a degree-k node in the original network 
is pk; the probability that we have a new node with degree k' in the new 
network is

Let us assume that we know ࢭkࢮ and ࢭk2ࢮ for the original degree distribu-
tion pk. Our goal is to calculate  ࢭk'ࢭ ,ࢮk'2ࢮ for the new degree distribution p'k', 
obtained after we randomly removed an f fraction of the nodes. For this 
we write

ADVANCED TOPICS 8.C
CRITICAL THRESHOLD
UNDER RANDOM FAILURES

NETWORK ROBUSTNESS

(8.31)

(8.32)p 'k ' = pk
k=k '
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�
��

�
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k
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�
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining

NETWORK ROBUSTNESS

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining
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(8.33)
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In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining
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In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining
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In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.

Figure 8.28

The Integration Domain

k=[k’, ∞)

k’

k

= pk
k '=0

k

�
k=0

�

� k!
(k '� 2)!(k � k ')!

f k�k ' (1� f )k '�2 (1� f )2

k ' f " k 'p 'k '
k '"0

= k '
k '=0

�

� pk
k=k '

�

� k!
k '! k � k '( )!

�
��

�
	�
f k�k ' 1� f( )k '

=
k '=0

�

� pk
k '=k '

�

� k(k �1)!
(k '�1)! k � k '( )! f

k�k ' 1� f( )k '�1 (1� f ).

=
k '=0

�

� =
k=k '

�

�
k=0

�

� .
k '=0

k

�

k ' f = k '
k=0

�

� pk
k '=0

k

� k(k �1)!
k '�1( )! k � k '( )! f

k�k ' 1� f( )k '�1 1� f( )

= 1� f( )kpk
k '=0

k

�
k=0

�

� k �1( )!
k '�1( )! k � k '( )! f

k�k ' 1� f( )k '�1

= 1� f( )kpk
k '=0

k

�
k=0

�

� k �1
k '�1

�
��

�
	�
f k�k ' 1� f( )k '�1

= 1� f( )kpk
k=0

�

�

= 1� f( ) k .

k ' 2 f " k '(k ' 1)� k ' f

= k '(k '�1) f + k ' f

" k ' k ' 1 �
k '"0

p 'k ' � k ' f .

k '(k ' 1) f " k '(k ' 1)p 'k '
k '"0

= k '(k '�1) pk
k=k '

�

�
k '=0

�

� k
k '

�
��

�
	�
f k�k ' (1� f )k '

= k '(k '�1) pk
k '=0

k

�
k=0

�

� k '(k '�1)
k '!(k � k ')!

f k�k ' (1� f )k '

= (1� f )2
k=0

�

� k(k �1)pk
k '=0

k

� (k � 2)!
(k '� 2)!(k � k ')!

f k�k ' (1� f )k '�2

= (1� f )2
k=0

�

� k(k �1)pk
k '=0

k

� k � 2
k '� 2

�
��

�
	�
f k�k ' (1� f )k '�2

= (1� f )2
k=0

�

� k(k �1)pk

Random removal: average degree
Robustness

41

SECTION 8.12

The purpose of this section is to derive (8.7), that provides the critical 
threshold for random node removal [7, 51]. The random removal of an f 
fraction of nodes has two consequences:

•   It alters the degree of some nodes, as nodes that were previously con-
nected to the removed nodes will lose some links [k ĺ k' ≤ k].

•  Consequently, it changes the degree distribution, as the neighbors of 
the missing nodes will have an altered degree [pk ĺ p'k']. 

To be specific, after we randomly remove an f fraction of nodes, a node 
with degree k becomes a node with degree  k' with probability

The first f -dependent term in (8.31) accounts for the fact that the select-
ed node lost (k − k')  links, each with probability f; the next term accounts 
for the fact that node removal leaves k' links untouched, each with proba-
bility (1 − f).

The probability that we have a degree-k node in the original network 
is pk; the probability that we have a new node with degree k' in the new 
network is

Let us assume that we know ࢭkࢮ and ࢭk2ࢮ for the original degree distribu-
tion pk. Our goal is to calculate  ࢭk'ࢭ ,ࢮk'2ࢮ for the new degree distribution p'k', 
obtained after we randomly removed an f fraction of the nodes. For this 
we write

ADVANCED TOPICS 8.C
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UNDER RANDOM FAILURES
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The sum above is performed over the triangle shown in Figure 8.28. We 
can check that we are performing the same sum if we change the order of 
summation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums (Figure 8.28), obtaining
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In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.
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Hence we obtain

which connects ࢭk'2ࢮ�to the original ࢭk2ࢮ after the random removal of an f 
fraction of nodes. Let us put the results (8.35) and (8.38) together:

According to the Molloy-Reed criterion (8.4) the breakdown threshold is 
given by

Inserting (8.38) and (8.40) into (8.41) we obtain our final result (8.7), 

providing the breakdown threshold of networks with arbitrary pk under 
random node removal.

NETWORK ROBUSTNESS

(8.39)

(8.40)

(8.41)

(8.42)

� �k � f = (1� f )�k�

� �k � f = (1� f )2 �k2 � + f (1� f )�k�

� =
�k '2 � f
�k '� f

= 2

fc = 1�
1

�k2 �
�k�

�1

(8.38)

k '2
f
= k '(k '�1)+ k ' f

= k '(k '�1) f + k ' f

= (1� f )2 k(k �1) + (1� f ) k

= (1� f )2 k2 � k( )+ 1� f( ) k

= (1� f )2 k2 � 1� f( )2 k + 1� f( ) k

= (1� f )2 k2 � � f 2 + 2 f �1+1� f( ) k
= (1� f )2 k2 + f 1� f( ) k .

,

.

= (1� f )2 k(k �1) .

.



43 CRITICAL THRESHOLD UNDER RANDOM FAILURES

Hence we obtain

which connects ࢭk'2ࢮ�to the original ࢭk2ࢮ after the random removal of an f 
fraction of nodes. Let us put the results (8.35) and (8.38) together:

According to the Molloy-Reed criterion (8.4) the breakdown threshold is 
given by

Inserting (8.38) and (8.40) into (8.41) we obtain our final result (8.7), 

providing the breakdown threshold of networks with arbitrary pk under 
random node removal.

NETWORK ROBUSTNESS

(8.39)

(8.40)

(8.41)

(8.42)

� �k � f = (1� f )�k�

� �k � f = (1� f )2 �k2 � + f (1� f )�k�

� =
�k '2 � f
�k '� f

= 2

fc = 1�
1

�k2 �
�k�

�1

(8.38)

k '2
f
= k '(k '�1)+ k ' f

= k '(k '�1) f + k ' f

= (1� f )2 k(k �1) + (1� f ) k

= (1� f )2 k2 � k( )+ 1� f( ) k

= (1� f )2 k2 � 1� f( )2 k + 1� f( ) k

= (1� f )2 k2 � � f 2 + 2 f �1+1� f( ) k
= (1� f )2 k2 + f 1� f( ) k .

,

.

= (1� f )2 k(k �1) .

.

Random removal: average degree
Robustness

43 CRITICAL THRESHOLD UNDER RANDOM FAILURES

Hence we obtain

which connects ࢭk'2ࢮ�to the original ࢭk2ࢮ after the random removal of an f 
fraction of nodes. Let us put the results (8.35) and (8.38) together:

According to the Molloy-Reed criterion (8.4) the breakdown threshold is 
given by

Inserting (8.38) and (8.40) into (8.41) we obtain our final result (8.7), 

providing the breakdown threshold of networks with arbitrary pk under 
random node removal.

NETWORK ROBUSTNESS

(8.39)

(8.40)

(8.41)

(8.42)

� �k � f = (1� f )�k�

� �k � f = (1� f )2 �k2 � + f (1� f )�k�

� =
�k '2 � f
�k '� f

= 2

fc = 1�
1

�k2 �
�k�

�1

(8.38)

k '2
f
= k '(k '�1)+ k ' f

= k '(k '�1) f + k ' f

= (1� f )2 k(k �1) + (1� f ) k

= (1� f )2 k2 � k( )+ 1� f( ) k

= (1� f )2 k2 � 1� f( )2 k + 1� f( ) k

= (1� f )2 k2 � � f 2 + 2 f �1+1� f( ) k
= (1� f )2 k2 + f 1� f( ) k .

,

.

= (1� f )2 k(k �1) .

.

43 CRITICAL THRESHOLD UNDER RANDOM FAILURES

Hence we obtain

which connects ࢭk'2ࢮ�to the original ࢭk2ࢮ after the random removal of an f 
fraction of nodes. Let us put the results (8.35) and (8.38) together:

According to the Molloy-Reed criterion (8.4) the breakdown threshold is 
given by

Inserting (8.38) and (8.40) into (8.41) we obtain our final result (8.7), 

providing the breakdown threshold of networks with arbitrary pk under 
random node removal.

NETWORK ROBUSTNESS

(8.39)

(8.40)

(8.41)

(8.42)

� �k � f = (1� f )�k�

� �k � f = (1� f )2 �k2 � + f (1� f )�k�

� =
�k '2 � f
�k '� f

= 2

fc = 1�
1

�k2 �
�k�

�1

(8.38)

k '2
f
= k '(k '�1)+ k ' f

= k '(k '�1) f + k ' f

= (1� f )2 k(k �1) + (1� f ) k

= (1� f )2 k2 � k( )+ 1� f( ) k

= (1� f )2 k2 � 1� f( )2 k + 1� f( ) k

= (1� f )2 k2 � � f 2 + 2 f �1+1� f( ) k
= (1� f )2 k2 + f 1� f( ) k .

,

.

= (1� f )2 k(k �1) .

.

<latexit sha1_base64="GG2kSCmDcUErpcDGQ6Du5VYnXuI="></latexit>

hk0if = (1� f)hki
hk02if = (1� f)2hk2i+ f(1� f)hki

11 ROBUSTNESS OF SCALE-FREE NETWORKS

Molloy-Reed Criterion
To understand the origin of the anomalously high fc characterizing the 
Internet and scale-free networks, we calculate fc for a network with an 
arbitrary degree distribution. To do so we rely on a simple observation: 
For a network to have a giant component, most nodes that belong to it 
must be connected to at least two other nodes (Figure 8.8). This leads to 
the Molloy-Reed criterion (ADVANCED TOPICS 8.B), stating that a randomly 
wired network has a giant component if [6]

Networks with ț� < 2 lack a giant component, being fragmented into 
many disconnected components. The Molloy-Reed criterion (8.4) links 
the network’s integrity, as expressed by the presence or the absence of a 
giant component, to ࢭkࢮ and ࢭk2ࢮ. It is valid for any degree distribution pk.

To illustrate the predictive power of (8.4), let us apply it to a random net-
work. As in this case ࢭk2ࢭ =�ࢮkࢮ(ࢭ + 1kࢮ), a random network has a giant 
component if

or

This prediction coincides with the necessary condition (3.10) for the ex-
istence of a giant component.

Critical Threshold
To understand the mathematical origin of the robustness observed in 
Figure 8.7, we ask at what threshold will a scale-free network loose its gi-
ant component. By applying the Molloy-Reed criteria to a network with 
an arbitrary degree distribution, we find that the critical threshold fol-
lows [7] (ADVANCED TOPICS 8.C)

The most remarkable prediction of (8.7) is that the critical threshold fc 
depends only on ࢭkࢮ�and ࢭk2ࢮ, quantities that are uniquely determined 
by the degree distribution pk. 

Let us illustrate the utility of (8.7) by calculating the breakdown thresh-
old of a random network. Using ࢭk2ࢭ = ࢮkࢮ(ࢭk1 + ࢮ), we obtain (ADVANCED 

TOPICS 8.D)

Hence, the denser is a random network, the higher is its fc, i.e. the more 

(8.4)

(8.5)

(8.6)
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Scale-free Network Under Node Failures

NETWORK ROBUSTNESS

� = �k2 �
�k�

> 2.

� = �k2 �
�k�

= �k�(1+ �k�)
�k�

= 1+ �k� > 2

�k� >1 .

(8.7)fc = 1�
1

�k2 �
�k�

�1
.
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.

To illustrate the robustness of a scale-free net-
work we start from the network we construct-
ed in Online Resource 4.1, i.e. a scale-free net-
work generated by the Barabási-Albert model. 
Next we randomly select and remove nodes 
one-by-one. As the movie illustrates, despite 
the fact that we remove a significant fraction 
of the nodes, the network refuses to break 
apart. Visualization by Dashun Wang.

>

>

Figure 8.8
Molloy-Reed Criterion

Each individual must hold the hand of two 
other individuals to form a chain. Similarly, 
to have a giant component in a network, on 
average each of its nodes should have at least 
two neighbors. The Molloy-Reed criterion (8.4) 
exploits this property, allowing us to calculate 
the critical point at which a network breaks 
apart. See ADVANCED TOPICS 8.B for the deriva-
tion.

So, for any Pk, with random removal

Denser

-> more robust

Only depends on 1st and 
2nd moment of p(k)
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SECTION 8.13

In this section we derive the dependence (8.10) of the breakdown thresh-
old of a scale-free network on the network size N. We start by calculating 
the mth moment of a power-law distribution

Using (4. 18)

we obtain

To calculate fc we need to determine the ratio

which for large N (and hence for large kmax) depends on Ȗ as

The breakdown threshold is given by (8.7)

where ț is given by (8.46). Inserting (8.43) into (8.42) and (8.47), we obtain

which is (8.10).

ADVANCED TOPICS 8.D
BREAKDOWN OF A FINITE
SCALE-FREE NETWORK
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nodes we need to remove to break it apart. Furthermore (8.8) predicts 
that fc  is always finite, hence a random network must break apart after 
the removal of a finite fraction of nodes. 

Equation (8.7) helps us understand the roots of the enhanced robustness 
observed in Figure 8.7. Indeed, for scale-free networks with Ȗ�< 3 the sec-
ond moment ࢭk2ࢮ�diverges in the N ̹�∞ limit. If  we insert ࢭk2ࢮ�ĺ�∞ into 
(8.7), we find that fc converges to fc = 1. This means that to fragment a 
scale-free network we must remove all of its nodes. In other words, the 
random removal of a finite fraction of its nodes does not break apart a 
large scale-free network. 

To better understand this result we express ࢭkࢮ and ࢭk2ࢮ in terms of the 
parameters characterizing a scale-free network: the degree exponent�Ȗ�
and the minimal and maximal degrees, kmin and kmax, obtaining 

Equation (8.9) predicts that (Figure 8.9):

•  For ਠ�> 3 the critical threshold fc depends only on Ȗ and kmin, hence fc 

is independent of the network size N. In this regime a scale-free net-
work behaves like a random network: it falls apart once a finite frac-
tion of its nodes are removed. 

•  For ਠ�< 3 the kmax diverges for large N, following (4.18). Therefore in 
the N ĺ�∞� limit (8.9) predicts  fc ̹�1. In other words, to fragment an 
infinite scale-free network we must remove all of its nodes.

Equations (8.6)-(8.9) are the key results of this chapter, predicting that 
scale-free networks can withstand an arbitrary level of random failures 
without breaking apart. The hubs are responsible for this remarkable 
robustness. Indeed, random node failures by definition are blind to de-
gree, affecting with the same probability a small or a large degree node. 
Yet, in a scale-free network we have far more small degree nodes than 
hubs. Therefore, random node removal will predominantly remove one 
of the numerous small nodes as the chances of selecting randomly one 
of the few large hubs is negligible. These small nodes contribute little to 
a network’s integrity, hence their removal does little damage.

Returning to the airport analogy of Figure 4.6, if we close a randomly se-
lected airport, we will most likely shut down one of the numerous small 
airports. Its absence will be hardly noticed elsewhere in the world: you 
can still travel from New York to Tokyo, or from Los Angeles to Rio de 
Janeiro.
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Robustness of Finite Networks

Equation (8.9) predicts that for a scale-free network fc converges to one 
only if kmax ĺ ∞, which corresponds to the N ĺ�∞ limit. While many net-
works of practical interest are very large, they are still finite, prompt-
ing us to ask if the observed anomaly is relevant for finite networks. To 
address this we insert (4.18) into (8.9), obtaining that fc depends on the 
network size N as (ADVANCED TOPICS 8.C)

where C collects all terms that do not depend on N. Equation (8.10) indi-
cates that the larger a network, the closer is its critical threshold to fc = 1. 

To see how close fc can get to the theoretical limit fc = 1, we calculate fc 
for the Internet. The router level map of the Internet has ࢭk2ࢭ/ࢮk37.91 =�ࢮ 
(Table 4.1). Inserting this ratio into (8.7) we obtain fc = 0.972. Therefore, 
we need to remove 97% of the routers to fragment the Internet into dis-
connected components. The probability that by chance 186,861 routers 
fail simultaneously, representing 97% of the N = 192,244 routers on the 
Internet, is effectively zero. This is the reason why the topology of the 
Internet is so robust to random failures.

In general a network displays enhanced robustness if its breakdown 
threshold deviates from the random network prediction (8.8), i.e. if

Enhanced robustness has several ramifications:

•  The inequality (8.11) is satisfied for most networks for which ࢭk2ࢮ devi-
ates from ࢭkࢮ(ࢭk1 + ࢮ). According to Figure 4.8, for virtually all reference 
networks ࢭk2ࢮ exceeds the random expectation. Hence the robustness 
predicted by (8.7) affects most networks of practical interest. This is 
illustrated in Table 8.1, that shows that for most reference networks 
(8.11) holds.

•  Equation (8.7) predicts that the degree distribution of a network does 
not need to follow a strict power law to display enhanced robustness. 
All we need is a larger ࢭk2ࢮ� than expected for a random network of 
similar size.

• The scale-free property changes not only fc, but also the critical expo-
nents Ȗp,�ȕp and Ȟ in the vicinity of fc. Their dependence on the degree 
exponent Ȗ�is discussed in ADVANCED TOPICS 8.A.

• Enhanced robustness is not limited to node removal, but emerges un-
der link removal as well (Figure 8.10).

,
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.

fc �1�
C

N
3��
� �1

(8.10)

������������

������������Node Removal

Link Removal

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1f

P ∞
(f
)/
P

∞
(0
)

What happens if we randomly remove the 
links rather than the nodes? The calculations 
predict that the critical threshold fc is the 
same for random link and node removal [7, 
8]. To illustrate this, we compare the impact 
of random node and link removal on a ran-
dom network with ࢭk2 =�ࢮ. The plot indicates 
that the network falls apart at the same crit-
ical threshold fc 0.5 ݍ. The difference is in the 
shape of the two curves. Indeed, the remov-
al of an f fraction of nodes leaves us with a 
smaller giant component than the removal of 
an f fraction of links. This is not unexpected: 
on average each node removes ࢭkࢮ links. Hence 
the removal of an f fraction of nodes is equiv-
alent with the removal of an fࢭkࢮ fraction of 
links, which clearly makes more damage than 
the removal of an f fraction of links.

Figure 8.10
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The error (green) and attack (purple) curves 
for the ten reference networks listed in Table 
4.1. The green vertical line corresponds to the 
estimated fc

rand for errors, while the purple ver-
tical line corresponds to  fc

targ for attacks. The 
estimated fc corresponds to the point where 
the giant component first drops below 1% of 
its original size. In most systems this proce-
dure offers a good approximation for fc. The 
only exception is the metabolic network, for 
which fc

targ < 0.25, but a small cluster persists, 
pushing the reported  fc

targ to  fc
targ 0.5 ݍ. 
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The error (green) and attack (purple) curves 
for the ten reference networks listed in Table 
4.1. The green vertical line corresponds to the 
estimated fc

rand for errors, while the purple ver-
tical line corresponds to  fc

targ for attacks. The 
estimated fc corresponds to the point where 
the giant component first drops below 1% of 
its original size. In most systems this proce-
dure offers a good approximation for fc. The 
only exception is the metabolic network, for 
which fc

targ < 0.25, but a small cluster persists, 
pushing the reported  fc

targ to  fc
targ 0.5 ݍ. 
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SECTION 8.15

The goal of this section is to derive (8.12), providing the attack threshold 
of a scale-free network. We aim to calculate fc for an uncorrelated scale-
free network, generated by the configuration model with pk = c ʷ k−ਠ where 
k = kmin ,…, kmax and c ≈ (ਠ − 1)/(k min  

−ਠ+1 − k max
−ਠ+1 ).

The removal of an f fraction of nodes in a decreasing order of their de-
gree (hub removal) has two effects [9, 51]:

(i)  The maximum degree of the network changes from kmax to k'max.

(ii) The links connected to the removed hubs are also removed, chang-
ing the degree distribution of the remaining network.

The resulting network is still uncorrelated, therefore we can use the 
Molloy-Reed criteria to determine the existence of a giant component. 

We start by considering the impact of (i). The new upper cutoff, k'max, is 
given by

If we assume that kmax ɝ�k'max and kmax ɝ�kmin (true for large scale-free 
networks with natural cutoff), we can ignore the kmax terms, obtaining

which leads to

Equation (8.52) provides the new maximum degree of the network after 
we remove an f fraction of the hubs.
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Next we turn to (ii), accounting for the fact that hub removal changes 
the degree distribution pk ĺ p'k . In the absence of degree correlations we 
assume that the links of the removed hubs connect to randomly selected 
stubs. Consequently, we calculate the fraction of links removed ‘random-
ly’, f, as a consequence of removing an f fraction of the hubs:

Ignoring the kmax  term again and using                              we obtain

Using (8.51) we obtain

For ਠ�̹ 2 we have f ̹ 1, which means that the removal of a tiny fraction 
of the hubs removes all links, potentially destroying the network. This is 
consistent with the finding of CHAPTER 4 that for ਠ = 2 the hubs dominate 
the network. 

In general the degree distribution of the remaining network is

Note that we obtained the degree distribution (8.32) in ADVANCED TOPICS 
8.C. This means that now we can proceed with the calculation method de-
veloped there for random node removal. To be specific, we calculate�ț for a 
scale-free network with kmin and k'max using (8.45):

Substituting into this (8.52) we have

After simple transformations we obtain
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SECTION 8.13

In this section we derive the dependence (8.10) of the breakdown thresh-
old of a scale-free network on the network size N. We start by calculating 
the mth moment of a power-law distribution

Using (4. 18)

we obtain

To calculate fc we need to determine the ratio

which for large N (and hence for large kmax) depends on Ȗ as

The breakdown threshold is given by (8.7)

where ț is given by (8.46). Inserting (8.43) into (8.42) and (8.47), we obtain

which is (8.10).
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Using (8.51) we obtain

For ਠ�̹ 2 we have f ̹ 1, which means that the removal of a tiny fraction 
of the hubs removes all links, potentially destroying the network. This is 
consistent with the finding of CHAPTER 4 that for ਠ = 2 the hubs dominate 
the network. 

In general the degree distribution of the remaining network is

Note that we obtained the degree distribution (8.32) in ADVANCED TOPICS 
8.C. This means that now we can proceed with the calculation method de-
veloped there for random node removal. To be specific, we calculate�ț for a 
scale-free network with kmin and k'max using (8.45):

Substituting into this (8.52) we have

After simple transformations we obtain
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work under attack. To do this we rely on the fact that hub removal 
changes the network in two ways [9]:

•  It changes the maximum degree of the network from kmax to k'max as all 
nodes with degree larger than  k'max have been removed.

•  The degree distribution of the network changes from pk to  p'k', as 
nodes connected to the removed hubs will loose links, altering the de-
grees of the remaining nodes.

By combining these two changes we can map the attack problem into 
the robustness problem discussed in the previous section. In other words, 
we can view an attack as random node removal from a network with ad-
justed k'max and p'k'. The calculations predict that the critical threshold fcfor 
attacks on a scale-free network is the solution of the equation [9, 10] (AD-
VANCED TOPICS 8.F)

Figure 8.12 shows the numerical solution of (8.12) in function of the de-
gree exponent Ȗ, allowing us to draw several conclusions:

•  While fc for failures decreases monotonically with Ȗ, fc for attacks can 
have a non-monotonic behavior: it increases for small Ȗ�and decreas-
es for large Ȗ.

•  fc for attacks is always smaller than fc for random failures.

•  For large Ȗ a scale-free network behaves like a random network. As a 
random network lacks hubs, the impact of an attack is similar to the 
impact of random node removal. Consequently the failure and the 
attack thresholds converge to each other for large Ȗ. Indeed, if Ȗ ĺ 
∞ then pk ĺ į(k − kmin), meaning that all nodes have the same degree 
kmin. Therefore random failures and targeted attacks become indistin-
guishable in the Ȗ ĺ ∞ limit, obtaining 

                        (8.13)

• As Figure 8.13 shows, a random network has a finite percolation thresh-
old under both random failures and attacks, as predicted by Figure 8.12 
and (8.13) for large Ȗ.

The airport analogy helps us understand the fragility of scale-free net-
works to attacks: The closing of two large airports, like Chicago’s O’Hare 
Airport or the Atlanta International Airport, for only a few hours would 
be headline news, altering travel throughout the U.S. Should some se-
ries of events lead to the simultaneous closure of the Atlanta, Chicago, 
Denver, and New York airports, the biggest hubs, air travel within the 
North American continent would come to a halt within hours.

Online Resource 8.2

Scale-free Networks Under Attack
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(8.12)fc
2��
1�� = 2 + 2 � �

3� �
kmin ( fc

3��
1�� �1).

The dependence of the breakdown threshold, 
fc, on the degree exponent ਠ for scale-free net-
works with kmin = 2, 3. The curves are predicted 
by (8.12) for attacks (purple) and by (8.7) for 
random failures (green). 
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During an attack we aim to inflict maximum 
damage on a network. We can do this by re-
moving first the highest degree node, fol-
lowed by the next highest degree, and so on. 
As the movie illustrates, it is sufficient to 
remove only a few hubs to break a scale-free 
network into disconnected components. Com-
pare this with the network’s refusal to break 
apart under random node failures, shown in 
Online Resource 8.1. Visualization by Dashun 
Wang.

>

fc �1� 1
(kmin �1)
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SECTION 8.1

Errors and failures can corrupt all human designs: The failure of a com-
ponent in your car’s engine may force you to call for a tow truck or a wiring 
error in your computer chip can make your computer useless. Many natu-
ral and social systems have, however, a remarkable ability to sustain their 
basic functions even when some of their components fail. Indeed, while 
there are countless protein misfolding errors and missed reactions in our 
cells, we rarely notice their consequences. Similarly, large organizations 
can function despite numerous absent employees. Understanding the ori-
gins of this robustness is important for many disciplines:

•  Robustness is a central question in biology and medicine, helping us 
understand why some mutations lead to diseases and others do not.

• It is of concern for social scientists and economists, who explore the 
stability of human societies and institutions in the face of such dis-
rupting forces as famine, war, and changes in social and economic 
order.

•  It is a key issue for ecologists and environmental scientists, who seek 
to predict the failure of an ecosystem when faced with the disruptive 
effects of human activity.

•  It is the ultimate goal in engineering, aiming to design communica-
tion systems, cars, or airplanes that can carry out their basic functions 
despite occasional component failures.

Networks play a key role in the robustness of biological, social and tech-
nological systems. Indeed, a cell's robustness is encoded in intricate regu-
latory, signaling and metabolic networks; the society’s resilience cannot 
be divorced from the interwoven social, professional, and communication 
web behind it; an ecosystem’s survivability cannot be understood without 
a careful analysis of the food web that sustains each species. Whenever 
nature seeks robustness, it resorts to networks.

INTRODUCTION

The cover of the 27 July 2000 issue of Nature, 
highlighting the paper entitled Attack and er-
ror tolerance of complex networks that began 
the scientific exploration of network robust-
ness [1].

Figure 8.1
Achilles’ Heel of Complex Networks
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The table shows the estimated fc for random 
node failures (second column) and attacks 
(fourth column) for ten reference networks. 
The procedure for determining fc is described 
in ADVANCED TOPICS 8.E. The third column 
(randomized network) offers fc for a network 
whose N and L coincides with the original 
network, but whose nodes are connected ran-
domly to each other (randomized network, 
fc

ER, determined by (8.8)). For most networks 
fc for random failures exceeds fc

ER
 for the cor-

responding randomized network, indicating 
that these networks display enhanced robust-
ness, as they satisfy (8.11). Three networks lack 
this property: the power grid, a consequence 
of the fact that its degree distribution is ex-
ponential (Figure 8.31a), and the actor and the 
citation networks, which have a very high ࢭkࢮ, 
diminishing the role of the high ࢭk2ࢮ�in (8.7).

Table 8.1

Breakdown Thresholds
Under Random Failures and Attacks

NETWORK RANDOM FAILURES RANDOM FAILURES
(RANDOMIZED NETWORK)(REAL NETWORK) (REAL NETWORK)

ATTACK

Internet

WWW

Power Grid

Mobile-Phone Call

Email

Science Collaboration

Actor Network 0.98

Citation Network

E. Coli Metabolism

Yeast Protein Interactions

In summary, in this section we encountered a fundamental property 
of real networks: their robustness to random failures. Equation (8.7) 
predicts that the breakdown threshold of a network depends on ࢭkࢮ and 
-which in turn are uniquely determined by the network's degree dis ,ࢮk2ࢭ
tribution. Therefore random networks have a finite threshold, but for 
scale-free networks with Ȗ < 3 the breakdown threshold converges to 
one. In other words, we need to remove all nodes to break a scale-free 
network apart, indicating that these networks show an extreme robust-
ness to random failures. 

The origin of this extreme robustness is the large ࢭk2ࢮ term. Given that 
for most real networks ࢭk2ࢮ is larger than the random expectation, en-
hanced robustness is a generic property of many networks. This ro-
bustness is rooted in the fact that random failures affect mainly the 
numerous small nodes, which play only a limited role in maintaning a 
network’s integrity.

Real networks
Errors and attacks
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(a) The distribution of energy loss for all 
North American blackouts between 1984 and 
1998, as documented by the North American 
Electrical Reliability Council. The distribution 
is typically fitted to (8.14). The reported expo-
nents for different countries are listed in Ta-
ble 8.2. After [18].

(b) The distribution of cascade sizes on Twit-
ter. While most tweets go unnoticed, a tiny 
fraction of tweets are shared thousands of 
times. Overall the retweet numbers are well 
approximated with (8.14) with�Į1.75 ݍ�. After 
[19].

(c) The cumulative distribution of earthquake 
amplitudes recorded between 1977 and 2000. 
The dashed lines indicate the power law fit 
(8.14) used by seismologists to characterize 
the distribution. The earthquake magnitude 
shown on the horizontal axis is the logarithm 
of s, which is the amplitude of the observed 
seismic waves. After [20].

Figure 8.17

Cascade Size Distributions

(c)

(b)

(a)

NETWORK ROBUSTNESS

particular seed node through its reposts until the end of a cascade 
(Figure 8.18). As Figure 8.17b indicates, the size distribution of the ob-
served cascades follows the power-law (8.14) with an avalanche expo-
nent�Į[19] �1.75ݖ�. The power law indicates that the vast majority of 
posted URLs do not spread at all, a conclusion supported by the fact 
that the average cascade size is only ࢭs1.14 = ࢮ. Yet, a small fraction of 
URLs are reposted thousands of times.

•  Earthquakes
Geological fault surfaces are irregular and sticky, prohibiting their 
smooth slide against each other. Once a fault has locked, the contin-
ued relative motion of the tectonic plates accumulate an increasing 
amount of strain energy around the fault surface. When the stress 
becomes sufficient to break through the asperity, a sudden slide re-
leases the stored energy, causing an earthquake. Earthquakes can be 
also induced by the natural rupture of geological faults, by volcanic 
activity, landslides, mine blasts and even nuclear tests. 

Each year around 500,000 earthquakes are detected with instrumen-
tation. Only about 100,000 of these are sufficiently strong to be felt 
by humans. Seismologists approximate the distribution of earth-
quake amplitudes with the power law (8.14) with ਞ�≈ 1.67 (Figure 8.17c) 
[20].

Earthquakes are rarely considered a manifestly network phenome-
non, given the difficulty of mapping out the precise network of inter-
dependencies that causes them. Yet, the resulting cascading failures 
bear many similarities to network-based cascading events, suggest-
ing common mechanisms.

The power-law distribution (8.14) followed by blackouts, informa-
tion cascades and earthquakes indicates that most cascading fail-
ures are relatively small. These small cascades capture the loss of 
electricity in a few houses, tweets of little interest to most users, 
or earthquakes so small that one needs sensitive instruments to 
detect them. Equation (8.14) predicts that these numerous small 
events coexist with a few exceptionally large events. Examples 
of such major cascades include the 2003 power outage in North 
America (Figure 8.16), the tweet Iran Election Crisis: 10 Incredible 
YouTube Videos http://bit.ly/vPDLo that was shared 1,399 times 
[21], or the January 2010 earthquake in Haiti, with over 200,000 
victims. Interestingly, the avalanche exponents reported by elec-
trical engineers, media researches and seismologists are surpris-
ingly close to each other, being between 1.6 and 2 (Table 8.2).

Cascading failures are documented in many other environments:

•  The consequences of bad weather or mechanical failures can cas-
cade through airline schedules, delaying multiple flights and 
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One of the largest blackouts in North America 
took place on August 14, 2003, just before 4:10 
p.m. Its cause was a software bug in the alarm 
system at a control room of the First Energy 
Corporation in Ohio. Missing the alarm, the 
operators were unaware of the need to redis-
tribute the power after an overloaded trans-
mission line hit a tree. Consequently a normal-
ly manageable local failure began a cascading 
failure that shut down more than 508 gener-
ating units at 265 power plants, leaving an es-
timated 10 million people without electricity 
in Ontario and 45 million in eight U.S. states. 
The figure highlights the states affected by 
the August 14, 2003 blackout. For a satelite 
image of the blackout, see Figure 1.1.

Figure 8.16

Northeast Blackout of 2003
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the network structure. Second, the initial failure did not stay localized, 
but it spread along the links of the network, inducing additional failures. 
Eventually, multiple nodes lost their ability to carry out their normal func-
tions. Consequently each of these systems experienced cascading failures, 
a dangerous phenomena in most networks [17]. In this section we discuss 
the empirical patterns governing such cascading failures. The modeling of 
these events is the topic of the next section.

EMPIRICAL RESULTS
Cascading failures are well documented in the case of the power grid, 
information systems and tectonic motion, offering detailed statistics 
about their frequency and magnitude. 

•  Blackouts
A blackout can be caused by power station failures, damage to elec-
tric transmission lines, a short circuit, and so on. When the operating 
limits of a component is exceeded, it is automatically disconnected to 
protect it. Such failure redistributes the power previously carried by 
the failed component to other components, altering the power flow, 
the frequency, the voltage and the phase of the current, and the op-
eration of the control, monitoring and alarm systems. These changes 
can in turn disconnect other components as well, starting an ava-
lanche of failures.

A frequently recorded measure of blackout size is the energy un-
served. Figure 8.17a shows the probability distribution p(s) of energy 
unserved in all North American blackouts between 1984 and 1998. 
Electrical engineers approximate the obtained distribution with the 
power law [18],

where the avalanche exponent�Į is listed in Table 8. 2 for several coun-
tries. The power law nature of this distribution indicates that most 
blackouts are rather small, affecting only a few consumers. These 
coexists, however, with occasional major blackouts, when millions of 
consumers lose power (Figure 8.16).

•  Information Cascades
Modern communication systems, from email to Facebook or Twitter, 
facilitate the cascade-like spreading of information along the links of 
the social network. As the events pertaining to the spreading process 
often leave digital traces, these platforms allow researchers to detect 
the underlying cascades. 

The micro-blogging service Twitter has been particularly studied in 
this context. On Twitter the network of who follows whom can be 
reconstructed by crawling the service's follower graph. As users fre-
quently share web-content using URL shorteners, one can also track 
each spreading/sharing process. A study tracking 74 million such 
events over two months followed the diffusion of each URL from a 

(8.14)p(s) ~ s��,
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Examples of information cascades on Twitter. 
Nodes denote Twitter accounts, the top node 
corresponding to the account that first posted 
a certain shortened URL. The links correspond 
to those who retweeted it. These cascades 
capture the heterogeneity of information av-
alanches: most URLs are not retweeted at all, 
appearing as single nodes in the figure. Some, 
however, start major retweet avalanches, like 
the one seen at the bottom panel. After [19].

Figure 8.18
Information Cascades

stranding thousands of passengers (BOX 8.3) [22].

•  The  disappearance of a species can cascade through the food web 
of an ecosystem, inducing the extinction of numerous species and 
altering the habitat of others [23, 24, 25, 26].

• The shortage of a particular component can cripple supply chains. 
For example, the 2011 floods in Thailand have resulted in a chron-
ic shortage of car components that disrupted the production chain 
of more than 1,000 automotive factories worldwide. Therefore the 
damage was not limited to the flooded factories, but resulted in 
worldwide insurance claims reaching $20 billion [27].

In summary, cascading effects are observed in systems of rather dif-
ferent nature. Their size distribution is well approximated with the power 
law (8.14), implying that most cascades are too small to be noticed; a few, 
however, are huge, having a global impact. The goal of the next section is 
to understand the origin of these phenomena and to build models that can 
reproduce its salient features.

SOURCE EXPONENT CASCADE

Power grid (North America)

Power grid (Sweden)

Power grid (Norway)

Power grid (New Zealand)

Power grid (China)

Twitter Cascades

Earthquakes Seismic Wave

The reported avalanche exponents of the pow-
er law distribution (8.14) for energy loss in 
various countries [18], twitter cascades [19] 
and earthquake sizes [20]. The third column 
indicates the nature of the measured cascade 
size s, corresponding to power or energy not 
served, the number of retweets generated by a 
typical tweet and the amplitude of the seismic 
wave.

Table 8.2

Avalanche Exponents in Real Systems.
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Avalanche Exponents in Real Systems.
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FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 
propagation model is frequently used to describe cascading failures as 
well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 
node contains an agent. An agent i can be in the state 0 (active or healthy) 
or 1 (inactive or failed), and is characterized by a breakdown threshold 
ĳi� �ĳ�for all i.

All agents are initially in the healthy state 0. At time t = 0 one agent 
switches to state 1, corresponding to an initial component failure or to 
the release of a new piece of information. In each subsequent time step 
we randomly pick an agent and update its state following a threshold 
rule:

•  If the selected agent i is in state 0, it inspects the state of its ki neigh-
bors. The agent i adopts state 1 (i.e. it also fails) if at least a ĳ fraction 
of its ki neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a ĳ fraction of its 
neighbors have failed. Depending on the local network topology, an ini-
tial perturbation can die out immediately, failing to induce the failure 
of any other node. It can also lead to the failure of multiple nodes, as il-
lustrated in Figure 8.20a,b. The simulations document three regimes with 
distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime
If ࢭkࢮ is high, changing the state of a node is unlikely to move other 
nodes over their threshold, as the healthy nodes have many healthy 
neighbors.  In this regime cascades die out quickly and their sizes fol-
low an exponential distribution. Hence the system is unable to sup-
port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If ࢭkࢮ is small, flipping a single node can put several of its neighbors 
over the threshold, triggering a global cascade. In this regime pertur-
bations induce major breakdowns (purple symbols, Figure 8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-
lanches have widely different sizes. Numerical simulations indicate 
that in this regime the avalanche sizes s follow (8.14) (green and or-
ange  symbols, Figure 8.21d) with�Į = 3/2 if the underlying network is 
random. 
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Figure 8.20
Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold ĳ = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially flip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion ĳ and the average degree ࢭkࢮ�of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the (ࢭkࢮ, ĳ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and ĳ = 0.18, ࢭk1.05 = ࢮ (green), ࢭk3.0 =�ࢮ (pur-
ple), ࢭk5.76 =�ࢮ (orange) and ࢭk10.0 =�ࢮ (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent ਞ = 3/2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].

(a)

(c)

(d)

(b)
Observations “Hard” Model

20

One of the largest blackouts in North America 
took place on August 14, 2003, just before 4:10 
p.m. Its cause was a software bug in the alarm 
system at a control room of the First Energy 
Corporation in Ohio. Missing the alarm, the 
operators were unaware of the need to redis-
tribute the power after an overloaded trans-
mission line hit a tree. Consequently a normal-
ly manageable local failure began a cascading 
failure that shut down more than 508 gener-
ating units at 265 power plants, leaving an es-
timated 10 million people without electricity 
in Ontario and 45 million in eight U.S. states. 
The figure highlights the states affected by 
the August 14, 2003 blackout. For a satelite 
image of the blackout, see Figure 1.1.

Figure 8.16

Northeast Blackout of 2003

NETWORK ROBUSTNESS CASCADING FAILURES

the network structure. Second, the initial failure did not stay localized, 
but it spread along the links of the network, inducing additional failures. 
Eventually, multiple nodes lost their ability to carry out their normal func-
tions. Consequently each of these systems experienced cascading failures, 
a dangerous phenomena in most networks [17]. In this section we discuss 
the empirical patterns governing such cascading failures. The modeling of 
these events is the topic of the next section.

EMPIRICAL RESULTS
Cascading failures are well documented in the case of the power grid, 
information systems and tectonic motion, offering detailed statistics 
about their frequency and magnitude. 

•  Blackouts
A blackout can be caused by power station failures, damage to elec-
tric transmission lines, a short circuit, and so on. When the operating 
limits of a component is exceeded, it is automatically disconnected to 
protect it. Such failure redistributes the power previously carried by 
the failed component to other components, altering the power flow, 
the frequency, the voltage and the phase of the current, and the op-
eration of the control, monitoring and alarm systems. These changes 
can in turn disconnect other components as well, starting an ava-
lanche of failures.

A frequently recorded measure of blackout size is the energy un-
served. Figure 8.17a shows the probability distribution p(s) of energy 
unserved in all North American blackouts between 1984 and 1998. 
Electrical engineers approximate the obtained distribution with the 
power law [18],

where the avalanche exponent�Į is listed in Table 8. 2 for several coun-
tries. The power law nature of this distribution indicates that most 
blackouts are rather small, affecting only a few consumers. These 
coexists, however, with occasional major blackouts, when millions of 
consumers lose power (Figure 8.16).

•  Information Cascades
Modern communication systems, from email to Facebook or Twitter, 
facilitate the cascade-like spreading of information along the links of 
the social network. As the events pertaining to the spreading process 
often leave digital traces, these platforms allow researchers to detect 
the underlying cascades. 

The micro-blogging service Twitter has been particularly studied in 
this context. On Twitter the network of who follows whom can be 
reconstructed by crawling the service's follower graph. As users fre-
quently share web-content using URL shorteners, one can also track 
each spreading/sharing process. A study tracking 74 million such 
events over two months followed the diffusion of each URL from a 

(8.14)p(s) ~ s��,
Avalance exponent
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BRANCHING MODEL
Given the complexity of the failure propogation model, it is hard to an-
alytically predict the scaling behavior of the obtained avalanches. To 
understand the power-law nature of p(s) and to calculate the avalanche 
exponent Į, we turn to the branching model. This is the simplest model 
that still captures the basic features of a cascading event.

The model builds on the observation that each cascading failure follows 
a branching process. Indeed, let us call the node whose initial failure 
triggers the avalanche the root of the tree. The branches of the tree are 
the nodes whose failure was triggered by this initial failure. For exam-
ple, in Figures 8.20a,b, the breakdown of node A starts the avalanche, 
hence A is the root of the tree. The failure of A leads to the failure of B 
and E, representing the two branches of the tree. Subsequently E induc-
es the failure of D and B leads to the failure of C (Figure 8.21a).

The branching model captures the essential features of avalanche prop-
agation (Figure 8.21). The model starts with a single active node. In the 
next time step each active node produces k offsprings, where k is select-
ed from a pk distribution. If a node selects k = 0, that branch dies out 
(Figure 8.21b). If it selects k > 0, it will have k new active sites. The size 
of an avalanche corresponds to the size of the tree when all active sites 
died out (Figure 8.21c).

MODELING CASCADING FAILURESNETWORK ROBUSTNESS

(a) The branching process mirroring the prop-
agation of the failure shown in Figure 
8.20a,b. The perturbation starts from node 
A, whose failure flips B and E, which in turn 
flip C and D, respectively.

(b) An elementary branching process. Each ac-
tive link (green) can become inactive with 
probability p0 = 1/2 (top) or give birth to two 
new active links with probability p2 = 1/2 
(bottom).

(c) To analytically calculate p(s) we map the 
branching process into a diffusion prob-
lem. For this we show the number of active 
sites, x(t), in function of time t. A nonze-
ro x(t) means that the avalanche persists. 
When x(t) becomes zero, we loose all active 
sites and the avalanche ends. In the exam-
ple shown in the image this happens at t = 5, 
hence the size of the avalanche is tmax + 1 = 6. 

An exact mapping between the branching 
model and a one dimensional random walk 
helps us calculate the avalanche exponent. 
Consider a branching process starting from 
a stub with one active end. When the active 
site becomes inactive, it decreases the num-
ber of its active sites, i.e. x ĺ�x − 1. When the 
active site branches, creates two active sites, 
i.e. x ĺ x + 1. This maps the avalanche size s 
to the time it takes for the walk that starts at 
x = 1 to reach x = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/2 
[32]. For branching process corresponding 
to scale-free pk, the avalanche exponent de-
pends on ਠ, as shown in Figure 8.22.

(d,e,f) Typical avalanches generated by the branch-
ing model in the subcritical (d), supercriti-
cal (e) and critical regime (f). The green node 
in each cascade marks the root of the tree, 
representing the first perturbation. In (d) 
and (f) we show multiple trees, while in (e) 
we show only one, as each tree (avalanche)
grows indefinitely.

Figure 8.21
Branching Model
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The branching model predicts the same phases as those observed in the 
cascading failures model. The phases are now determined only by ࢭkࢮ, 
hence by the pk distribution:

•  Subcritical Regime: ࢭk1 > ࢮ
For ࢭk1 > ࢮ on average each branch has less then one offspring. Conse-
quently each tree will terminate quickly (Figure 8.21d). In this regime 
the avalanche sizes follow an exponential distribution.

•  Supercritical Regime: ࢭk1 < ࢮ
For ࢭk1 < ࢮ on average each branch has more than one offspring. Conse-
quently the tree will continue to grow indefinitely (Figure 8.21e). Hence  
in this regime all avalanches are global.

•  Critical Regime: ࢭk1 = ࢮ
For ࢭk1 = ࢮ on average each branch has exactly one offspring. Conse-
quently some trees are large and others die out shortly (Figure 8.21e). 
Numerical simulations indicate that in this regime the avalanche size 
distribution follows the power law (8.14).

The branching model can be solved analytically, allowing us to deter-
mine the avalanche size distribution for an arbitrary pk. If pk is exponen-
tially bounded, e.g. it has an exponential tail, the calculations predict Į = 
3/2. If, however, pk is scale-free, then the avalanche exponent depends on 
the power-law exponent ਠ, following (Figure 8.22) [32, 33]

This prediction allows us to revisit Table 8.2, finding that the empirically 
observed avalanche exponents are all between 1.5 and 2, as predicted by 
(8.15). 

In summary, we discussed two models that capture the dynamics of 
cascading failures: the failure propagation model and the branching mod-
el. In the literature we may also encounter the overload model, which is 
designed to capture power grid failures [18], or the sandpile model, that 
captures the behavior of cascading failures in the critical regime [31, 32]. 
Other models can also account for the fact that nodes and links have dif-
ferent capacities to carry traffic [34]. These models differ in their realism 
and the number and the nature of their tuning parameters. Yet, they all 
predict the existence of a critical state, in which the avalanche sizes follow 
a power law. The avalanche exponent Į is uniquely determined by the de-
gree exponent of the network on which the avalanche propagates. The fact 
that models with rather different propagation dynamics and failure mech-
anisms predict the same scaling law and avalanche exponent suggests that 
the underlying phenomena is universal, i.e. it is model independent.

The dependence of the avalanche exponent ਞ 
on the degree exponent ਠ of the network on 
which the avalanche propagates, according 
to (8.15). The plot indicates that between 2 < 
ਠ�< 3 the avalanche exponent depends on the 
degree exponent. Beyond ਠ = 3, however, the 
avalanches behave as they would be spreading 
on a random network, in which case we have 
Į =3/2.

Figure 8.22
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- Simple process, well studied in finite dimensional lattices 
- Simplest way to explore or search in a network 
- Basic element of diffusion processes
- Basis of PageRank 

W = ∑
i

WiNum walkers Markovian random walker dij =
r
ki

r = ∑
j∼i

dijTotal diffusion rate
Out of I

Wk =
1
Nk ∑

i|ki=k

Wi

Hypothesis = statistical equivalence of nodes with the same degree 

Degree-block 
Variables

Diffusion  
equation ∂tWk(t) = − rWk(t) + k∑

k′ 

p(k′ |k)
r
k′ 

Wk′ 
(t)

Walks in networks

Number walkers 

on node i Rate out of i to j

P: probability of having neighbour with degree k’



∂tWk(t) = − rWk(t) + k∑
k′ 

p(k′ |k)
r
k′ 

Wk′ 
(t)

∂tWk(t) = − rWk(t) +
k

⟨k⟩
r∑

k′ 

p(k′ )Wk′ 
(t)

Uncorr. networks p(k′ |k) =
k′ p(k′ )

⟨k⟩

Stationary solution:  ∂tWk(t) = 0 Wk =
k

⟨k⟩
W
Nusing ∑

k

p(k)Wk = W/N

Finally, probability to find one walker in degree k: pk =
Wk

W
=

k
⟨k⟩

1
N

∝ k
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Walks in (directed) networks
PageRank
Previous ranking: crawl around a starting page and return the ranking based on the #matches to word query, index, etc
The PageRank algorithm:  major breakthrough based on idea that ranking depends on network topology
“Google” defines the importance of each document by a combination of the probability that a random walker surfing the web will visit that document, and some heuristics based in 
the text disposition, [cit. Barrat/Barth/Vesp]

PR(i) =
q
N

+ (1 − q)∑
j

xij
PR( j)
kout,j

q = damping / teleportation

Brin and Page, 1998 

PR(k) =
1
Nk ∑

i∈k

PR(i)

Degree-block variables k = (kin, kout)
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Mean-field approx: PR( j) = P(k)
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x_ij: adjacency

Probability that a random walker will visit page i:
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PageRank

PR(k) =
q
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+ (1 − q)
kin
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k′ 

PR(k′ )P(k′ ) =
q
N

+
(1 − q)

N
kin

⟨kin⟩
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pn(k) ≡ 1
NP (k)

∑

i∈k

pn(i). (3)

Note that now “degree class k” means all the nodes with in-degree kin and out-
degree kout; P (k) is the probability that a node is in the degree class k. Taking
the average of Eq. 2 for all nodes of the degree class k we obtain

1
NP (k)

∑

i∈k

pn(i) =
q

N
+

(1 − q)
NP (k)

∑

i∈k

∑

j:kout(j) "=0

aji

kout(j)
pn−1(j). (4)

From Eq. 3 we see that the left-hand side of Eq. 4 is pn(k). In the right-hand
side we split the sum over j into two sums, one over all the degree classes k′ and
the other over all the nodes within each degree class k′. We get

pn(k) =
q

N
+

(1 − q)
NP (k)

∑

k′

1
k′

out

∑

i∈k

∑

j∈k′

ajipn−1(j). (5)

At this point we perform our mean field approximation [9], which consists in
substituting the PageRank of the predecessor neighbors of node i by its mean
value, that is,

∑

i∈k

∑

j∈k′

ajipn−1(j) # pn−1(k
′)

∑

i∈k

∑

j∈k′

aji

= pn−1(k
′)Ek′→k, (6)

where Ek′→k is the total number of links pointing from nodes of degree k′ to
nodes of degree k. This matrix can also be rewritten as

Ek′→k = kinP (k)N
Ek′→k

kinP (k)N
= kinP (k)NPin(k′|k), (7)

where Pin(k′|k) is the probability that a predecessor of a node belonging to
degree class k belongs to degree class k′. The conditional probability Pin(k′|k)
incorporates the so-called degree-degree correlation, i.e., the correlation between
the degree of a node and that of its neighbors (see [10] pp. 243–245). Using
Equations 6 and 7 in Eq. 5 we finally obtain

pn(k) =
q

N
+ (1 − q)kin

∑

k′

Pin(k′|k)
k′

out
pn−1(k

′), (8)

which is a closed set of equations for the average PageRank of pages in the
same degree class. When the network has degree-degree correlations, the so-
lution of this equation is non-trivial and the resulting PageRank can have a
complex dependence on the degree. However, in the particular case of networks
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without degree-degree correlations, the transition probability Pin(k′|k) becomes
independent of k and takes the simpler form

Pin(k′|k) =
k′

outP (k′)
〈kin〉 , (9)

where 〈·〉 denotes the average value of the quantity in brackets. Using this ex-
pression in Eq. (8) and taking the limit n → ∞, we obtain

p(k) =
q

N
+

1 − q

N

kin

〈kin〉 , (10)

that is, the average PageRank of nodes of degree class k is independent of kout

and proportional to kin.
The same type of analysis allows to estimate the size of the fluctuations of

PageRank for nodes in the same degree class k. It turns out that, for uncorrelated
networks, the standard deviation σ(k) of the PageRank distribution about its
mean value is

σ2(k) & (1 − q)4

N2〈kin〉3

〈
k2

in

kout

〉
kin. (11)

For large in-degrees, the coefficient of variation is

σ(k)
p(k)

& (1 − q)
[〈

k2
in

kout

〉
1

〈kin〉kin

]1/2

. (12)

The factor
〈

k2
in

kout

〉
in this expression can be very large when the network has

a long-tailed degree distribution, which implies that the relative fluctuations
are large for small in-degrees. Therefore the true PageRank of pages with small
in-degree may differ significantly from its mean field approximation. However,
for large in-degrees the relative fluctuations become less important — due to
the factor kin in the denominator — and the average PageRank from Eq. 10
gives a good approximation. Note that the expression in Eq. 12 relates to the
relative fluctuations within a degree class, rather than across the entire graph.
Since PageRank is distributed according to a power law with γ close to 2, the
overall fluctuations diverge in the limit of infinite graph size. An analysis of the
PageRank distribution and of the relative fluctuations within each degree class
is omitted here for brevity, and will be included in an extended version of this
paper.

3 Results

For an empirical validation of the theoretical predictions in the previous section,
we analyzed four samples of the Web graph. Two of them were obtained by crawls
performed in 2001 and 2003 by the WebBase collaboration [6]. The other two
were collected by the WebGraph project [11]: the pages belong to two national

Uncorr. networks

PR(k) =
q
N

+
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PR(k′ )
k′ out

Ek′ →k

PageRank: heterogeneous MF

NB: MF result, important fluctuations are present

Extension: CiteRank in citation networks

Data from the Web

PageRank: also to quantify importance of scientific papers



Appendix 4

Laplacian matrix of a graph

The discrete Laplacian on a network and acting on a function φ is given by

!φ(v) =
∑

w∈"(v)

(φ(w) − φ(v)) . (A4.1)

From this definition, one introduces the Laplacian matrix of a graph given by L = −!,
which can be rewritten as

L = D − X (A4.2)

where D is the diagonal degree matrix with elements Di j = δi j ki and X is the adjacency
matrix. The Laplacian matrix has thus diagonal elements equal to the degree Lii = ki
and is the opposite of the adjacency matrix for off diagonal elements Li #= j = −xi j . It is
therefore symmetric if the graph is undirected. This matrix is a central concept in spectral
graph analysis (Mohar, 1997). For undirected graphs, some important properties appear,
such as the following:

• If the graph is an infinite square lattice grid, this definition of the Laplacian can be shown
to correspond to the continuous Laplacian.

• The Laplacian matrix L being symmetric, has real positive eigenvalues 0 ≤ λ1 ≤ . . . ≤
λN .

• The multiplicity of 0 as an eigenvalue of L is equal to the number of connected
components of the graph.

• The second smallest eigenvalue is called the algebraic connectivity. It is non-zero only
if the graph is formed of a single connected component. The magnitude of this value
reflects how well connected the overall graph is, and has implications for properties
such as synchronizability and clustering.

310
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Dij = δijki Xij = adj Lii = ki
Lij = − xij

Undirected graphs:
- on infinite square lattice == continuous Laplacian 
- L symmetric ==> spectrum is positive semidefinite 
- The multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of the graph. 
- The second smallest eigenvalue  is called the algebraic connectivity.  

It is non-zero only if the graph is formed of a single connected component. 

0 ≤ λ1 ≤ λ2 ≤ … ≤ λN

λ1

Basic Graph Notation
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! G = (V,E): a simple connected graph on n vertices
! A(G): the adjacency matrix
! D(G) = diag(d1, d2, . . . , dn): the diagonal degree matrix
! L = D − A: the combinatorial Laplacian
! L is semi-definite and 1 is always an eigenvector for the

eigenvalue 0.

! ! !

!

S4

L(S4) =









3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1
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Appendix 5

Return probability and spectral density

In this appendix, we give a simple derivation of the relation between the eigenvalue dis-
tribution ρ(λ) (also called the spectral density) of a generic Laplacian operator L and the
return probability p0(t) for the random walk described by the following master equation

!t p(i, t |i0, 0) = −
∑

j

Li j p( j, t |i0, 0) (A5.1)

with the initial condition p(i, 0|i0, 0) = δi i0 . Here the Laplacian can be either of the
form (8.9) or of the form studied in Chapter 7 and Appendix 4, the important point being
that

∑
i Li j = 0 to ensure that the evolution equation (A5.1) preserves the normalization∑

i p(i, t |i0, 0) = 1. The spectral density is defined as

ρ(λ) =
〈

1
N

N∑

i=1

δ(λ − λi )

〉

(A5.2)

where the λi are the eigenvalues of the Laplacian and where the brackets denote the average
over different realizations of the random network on which the random walk takes place.

The Laplace transform of p(i, t |i0, 0) is defined as

p̃i i0(s) =
∫ ∞

0
dte−st p(i, t |i0, 0). (A5.3)

The Laplace transform of !t p(i, t |i0, 0) can be obtained by an integration by parts as
∫ ∞

0
dte−st !t p(i, t |i0, 0) = −p(i, 0|i0, 0) + s p̃ii0(s) = s p̃ii0(s) − δi i0 (A5.4)

where δi i0 = 1 is i = i0, and 0 otherwise. This allows us to rewrite Equation (A5.1) as

sp̃ii0
(s) − δi i0 = −

∑

j

Li j p̃ j i0(s) (A5.5)

or ∑

j

(
sδi j + Li j

)
p̃ j i0(s) = δi i0 . (A5.6)

This equality means that the matrix p̃(s) is therefore the inverse of the matrix sI+L, where
I is the unit matrix (Ii j = δi j ).
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∑
i

Lij = 0 → ∑
i

p(i, t | i0,0) = 1
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312 Return probability and spectral density

The probability of return is by definition the probability of returning to the initial point
i0, averaged over all initial nodes and over different realizations of the random network

p0(t) =
〈

1
N

∑

i0

p(i0, t |i0, 0)

〉

. (A5.7)

Taking the Laplace transform of this equation leads to

p̃0(s) =
〈

1
N

∑

i0

p̃i0i0(s)

〉

=
〈

1
N

Tr p̃(s)
〉
, (A5.8)

where Tr denotes the trace operation. The trace of a matrix is moreover equal to the sum
of its eigenvalues, and we can use the fact that p̃(s) is the inverse of sI + L, to obtain that
its eigenvalues are given by 1/(s + λi ), i = 1, . . . , N . We therefore obtain

p̃0(s) =
〈

1
N

∑

i

1
s + λi

〉

. (A5.9)

We can now obtain p0(t) as the inverse Laplace transform of p̃0(s), which is given by
the integral in the complex plane

p0(t) =
∫ c+i∞

c−i∞
dsets p̃0(s), (A5.10)

where here i2 = −1 and c is a constant larger than any singularity of p̃0(s). This yields

p0(t) =
∫ c+i∞

c−i∞
dsets

〈
1
N

∑

j

1
s + λ j

〉

=
〈

1
N

∑

j

e−λ j t

〉

, (A5.11)

where we have used the residue theorem in order to obtain the last equality. Using the
definition of ρ(λ), this can then be rewritten as Equation (8.10)

p0(t) =
∫ ∞

0
dλe−λtρ(λ).
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where we have used the residue theorem in order to obtain the last equality. Using the
definition of ρ(λ), this can then be rewritten as Equation (8.10)

p0(t) =
∫ ∞

0
dλe−λtρ(λ).

Or equivalently
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Fig. 8.4. Schematic comparison of various searching strategies to find the tar-
get vertex t , starting from the source s. A, Broadcast search; B, Random walk;
C, Degree-biased strategy. The broadcast search finds the shortest path, at the
expense of high traffic.

explore the entire network very rapidly. In particular, the desired target is reached
after a number of steps equal to the shortest path from the source, and the deliv-
ery time is therefore equal to that obtained with full knowledge of the network.
The obvious drawback consists in the large amount of traffic generated, since at
each request all nodes within a shortest path distance ! of the source are visited,
where ! is given by the TTL. The number of such nodes typically grows exponen-
tially with ! and a large fraction of (or the whole) network receives a message at
each search process. The traffic thus grows linearly with the size N of the network.
Refined approaches have been put forward, in particular with the aim of obtain-
ing efficient Peer-to-Peer search methods, such as the replication of information at
various nodes, or iterative deepening, which consists of starting with a small TTL
and increasing it by one unit at a time only if the search is not successful (see, for
example, Yang and Garcia-Molina [2002]; Lv et al. [2002]). The amount of traffic
can then be sensibly reduced but will still remain high.

Intermediate situations are generally found, in which each node possesses a lim-
ited knowledge about the network, such as the information stored in each of its
neighbors. A straightforward and economical strategy is then given by the ran-
dom walk search, illustrated in Figure 8.4. In this case, the source node starts by
checking if any of its neighbors has the requested information. If not, it sends a

Searching in networks

Finds shortest path, generated traffic: traffic ∝ N

Not shortest path, less traffic: T ∝ N0.79 γ = 2.1 Peer-to-Peer networks, 

Adamic et al. (2001) 


What about this?



- Start from a  D-dimensional hypercubic lattice:
- add a link node i, and connect to node j with at geographical distance  with prob , 
- Each node knows its own position and that of its neighbours.
- Greedy search process: 

- a message has to be sent to a certain target node t whose geographical position is 
known. 

- A node i receiving the message forwards it to the neighbor node j geographically 
closest to the target ( )

rij ∼ r−α

min rjt

Kleinberg (2000a)
if , the delivery time scales as log^2(N) with the size N of the network. α = D

The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Navigation in a small world
It is easier to find short chains between points in some networks than others.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Searching in small world networks

What is the dimension then of real networks? Are they navigable? 
Barrat/Barth/Vesp Chapter 8



What did we talk about today?

-  Math-y Cascades …
-  How to engineer robustness?
-  Deeper Laplacian spectral theory

-  Calculations of the spectral densities
-  Specific search results
-  Dynamical systems in general

What didn’t we talk about today?

-  Formalism of robustness
-  Errors vs attacks
-  Cascades (qualitatively)

-  Walks and random walkers
-  Pagerank 
-  Introduction to Laplacian


