Network theory Part V: errors, attacks and walks

Complexity in Social Systems AA 2023/2024 **Maxime Lucas** Lorenzo Dall'Amico

Recap last lecture

Models

Barabasi-Albert model Bianconi-Barabasi model Link/Copying model

Origins of scale-free distributions Growing networks Assortativity and correlations "Robustness"

Concepts

Today!

Percolation! Random Walks Spectral properties

Introduction

Percolation

- What is the expected size of the largest cluster?
- What is the average cluster size?

Add dot with proba p

What it looks like on (random) networks?

Internet more robust than lattice

lff He

$$P(k, i \leftrightarrow j) = P(k \leftrightarrow j | k) p(k)$$
f giant component GC , each node in GC must be connected to at least two other nodes on average.
ence, average degree k_i of node i attached to j in GC:^[1]) N 1 N 1 N (k_i | i \leftrightarrow j) = \sum_{k_i} P(k_i i \leftrightarrow j) P(i \leftrightarrow j | k) p(k)
$$(k_i | i \leftrightarrow j) = \sum_{k_i} P(k_i i \leftrightarrow j) P(i \leftrightarrow j | k) p(k)$$

$$P(k_i | i \leftrightarrow j) = \frac{P(k_i, i \leftrightarrow j)}{P(i \leftrightarrow j)N(N-1)} \frac{2P(i \leftrightarrow j | k_i)p(k_i)}{2P(i \leftrightarrow j)N(N-1)} Bayels$$

$$N-1$$

$$P(i \leftrightarrow j) = \frac{2L}{P(k_i \langle k \leftrightarrow j \rangle)} = \frac{\langle k \rangle}{P(i \langle k \rightarrow j \rangle)N(N-1)} P(i \leftrightarrow j | k_i)p(k)$$

$$\sum_{k_i} k_i P(k_i | i \leftrightarrow j) = \sum_{k_i} k_i P(i \leftrightarrow j | k_i)p(k)$$

$$P(i \leftrightarrow j | k) p(k)$$

$$2L Mol(ky-Reeds criterion (onde
$$N(N-1) aggin!]$$

$$P(i \leftrightarrow j | k) p(k)$$

$$P(i \leftrightarrow j | k) p(k)$$$$

giant component GC, each node in GC must be connected to at least two other nodes on average.
ance, average degree k_i of node i attached to j in GC: 1)
$$N = 1$$
 $N = 1$
 $k_i | i \leftrightarrow j \rangle = \sum_{k_i} \frac{P(k, i \leftrightarrow j)}{P(i \leftarrow j)} \frac{P(i \leftrightarrow j | k) p(k)}{P(i \leftrightarrow j)} = \frac{P(i, i \leftrightarrow j)}{P(i \leftrightarrow j)N(N-1)} \frac{P(i \leftrightarrow j | k) p(k)}{P(i \leftrightarrow j)N(N-1)}$
Bayes
 $P(k_i | i \leftrightarrow j) = \frac{P(k_i, i \leftrightarrow j)}{P(i \leftrightarrow j)N(N-1)} \frac{2P(i \leftrightarrow j | k_i) p(k_i)}{P(i \leftrightarrow j)N(N-1)} = \sum_{k_i} \frac{P(i \leftrightarrow j | k) p(k)}{N-1}$
Bayes
 $P(i \leftrightarrow j) = \frac{2L}{P(k_i (k \rightarrow j))} = \frac{\langle k \rangle}{P(i \leftrightarrow j \mid k) p(k)} = \sum_{k_i} \frac{P(i \leftrightarrow j \mid k) p(k)}{N-1}$
 $\sum_{k_i} k_i P(k_N(i \rightarrow j)) = \sum_{k_i} \frac{\langle k \rangle}{P(i \leftrightarrow j \mid k) p(k)} = \sum_{k_i} \frac{k_{i_i} p(k_i)}{-1} = \sum_{k_i} \frac{k_{i_i} p(k_i)}{-1} \frac{2L}{\langle k \rangle} = \frac{\langle k \rangle}{\langle k \rangle}$
 $P(i \leftrightarrow j \mid k) p(k)$
 $2L$ Molloy-Reeds criterion (once
 $N(N-1)$ again!) $K = \frac{\langle k \rangle}{P(i \leftrightarrow j \mid k) p(k)} \rightarrow \langle k \rangle = \langle k \rangle^2 + \langle k \rangle \rightarrow \langle k \rangle > 1$
 k^2

giant component GC, each node in GC must be connected to at least two other nodes on average.
ence, average degree k_i of node i attached to j in GC: 1)
$$N = 1$$
 $N = 1$
 $\langle k_i | i \leftrightarrow j \rangle = \sum_{k_i} \frac{P(k, i \leftrightarrow j)}{k_i P(k_i | i_j)} \frac{P(i \leftrightarrow j | k_i) p(k_i)}{j!} = \frac{P(i \rightarrow j | k_i) p(k_i)}{P(i \leftrightarrow j)}$ Bayes
 $P(k_i | i \leftrightarrow j) = \frac{P(k_i, i \leftrightarrow j)}{P(i \leftrightarrow j) N(N-1)} \frac{2P(i \leftrightarrow j | k_i) p(k_i)}{j!} = \frac{P(i \rightarrow j | k_i) p(k_i)}{N-1}$ Bayes
 $P(i \leftrightarrow j) = \frac{2L}{P(k_i | i \rightarrow j)} = \frac{\langle k \rangle}{NP(i \leftrightarrow j | k_i) p(k_i)} = \sum_{k_i} \frac{k_{k_i} p(k_i)}{N-1}$ Boyes
 $P(i \rightarrow j) = \sum_{k_i} \frac{\langle k \rangle P(i \rightarrow j | k_i) p(k_i)}{NP(i \leftrightarrow j)} = \sum_{k_i} \frac{k_{k_i} p(k_i)}{N-1}$ $P(i \rightarrow j | k_i) p(k_i)$
 $\sum_{k_i} k_i P(k_i) \frac{2L}{(N^2 i_i)} = \sum_{k_i} \frac{\langle k \rangle P(i \leftrightarrow j | k_i) p(k_i)}{1 P(i \leftrightarrow j)} = \sum_{k_i} \frac{k_{k_i} p(k_i)}{N-1} = \sum_{k_i} \frac{k_i^2 p(k_i)}{\langle k \rangle}$
 $P(i \leftrightarrow j | k_i) p(k)$
 $2L$ Molloy-Reeds criterion (onde
 $N(N-1)$ again!] $P(i \rightarrow j | k_i) p(k)$ $K = \frac{\langle k^2 \rangle}{\langle k \rangle} > 2$.
 $P(i \leftrightarrow j | k_i) p(k)$ $K = \frac{\langle k \rangle^2}{\langle k \rangle} > 2$.
 $P(i \leftrightarrow j | k_i) p(k)$ $K = \frac{\langle k \rangle^2}{\langle k \rangle} > 2$.

When is there a GC?

P(i

 $P(k, i \leftrightarrow j) \quad P(i \leftrightarrow j \mid k) p(k)$

P(i

j)

j)

Random removal: find critical f

The problem becomes: does the damaged network still fulfil the Molloy-Reeds?

Initial network: p(k), <k>, <k^2>

Final network?

Proba that node with degree k goes to k' with prob

 $\binom{k}{k'} f^{k-k'}(1-f)^{k'}$

k' < k

Resulting degree distribution

$$p'(k') = \sum_{k} p(k) \binom{k}{k'} f^{k-k'} (1-f)^{k'}$$

Compute <k> and <k^2> for Molloy Reeds

Random removal: average degree

$$\langle k^{i} \rangle_{f} = \sum_{k'=0}^{\infty} k' p_{k'}$$

$$= \sum_{k'=0}^{\infty} k' \sum_{k=k'}^{\infty} p_{k} \left(\frac{k!}{k'!(k-k')!} \right) f_{k'0-k'k'}^{k-k'} (1-f_{k'}) \frac{k(k-1)!}{1!(k-k')!}$$

$$= \sum_{k'=0}^{\infty} \sum_{k'=k'}^{\infty} p_{k} \frac{k(k-1)!}{(k'-1)!(k-k')!} f^{k-k'} (1-f)^{k'-1} (1-f).$$

$$\sum_{k'=0}^{\infty} \sum_{k=k'}^{\infty} = \sum_{k=0}^{\infty} \sum_{k'=0}^{k} \sum_{k'$$

 ∞ $=\sum_{k'=0}^{\prime} k k'$ k $f^{k-k'}(1$ p_k k'

$$\begin{split} \left\langle k' \right\rangle_{f} &= \sum_{k=0}^{\infty} k \sum_{k'=0}^{k} p_{k} \frac{k(k-1)!}{(k'-1)!(k-k')!} f^{k-k'} (1-f)^{k'-1} (1-f) \\ &= \sum_{k=0}^{\infty} (1-f) k p_{k} \sum_{k'=0}^{k} \frac{(k-1)!}{(k'-1)!(k-k')!} f^{k-k'} (1-f)^{k'-1} \\ &= \sum_{k=0}^{\infty} (1-f) k p_{k} \sum_{k'=0}^{k} \binom{k-1}{k'-1} f^{k-k'} (1-f)^{k'-1} \\ &= \sum_{k=0}^{\infty} (1-f) k p_{k} \sum_{k'=0}^{k} \binom{k-1}{k'-1} f^{k-k'} (1-f)^{k'-1} \\ &= (1-f) \langle k \rangle. \end{split}$$

 1^{1} 1^{1} 1^{1} 1^{1} 1^{1}

Random removal: average degree

$$\begin{split} \left\langle k^{\prime 2} \right\rangle_{f} &= \left\langle k^{\prime}(k^{\prime}-1) + k^{\prime} \right\rangle_{f} \\ &= \left\langle k^{\prime}(k^{\prime}-1) \right\rangle_{f} + \left\langle k^{\prime} \right\rangle_{f} \\ &= \sum_{k^{\prime}=0}^{\infty} k^{\prime}(k^{\prime}-1) p_{k^{\prime}} + \left\langle k^{\prime} \right\rangle_{f}. \end{split}$$

 $\sum_{k'=0}^{\infty}$

$$\sum_{k'=0}^{\infty} p_{k'} = \sum_{k=k'}^{\infty} p_k \binom{k}{k'} f^{k-k'} (1$$

$$1) \rangle_f = \sum_{k'=0}^{\infty} k' (k'-1) p_{k'} = \sum_{k'=0}^{\infty} k' (k'-1) \sum_{k=k'}^{\infty} p_k \binom{k}{k'} f^{k-k'} (1-f)^{k'}$$

$(1 f)^2 k(k 1)$. Robustness

Random removal: average degree

$$\left\langle k^{2} \right\rangle_{f} = \left\langle k'(k'-1) + k' \right\rangle_{f}$$

$$= \left\langle k'(k'-1) \right\rangle_{f} + \left\langle k' \right\rangle_{f}$$

$$= (1-f)^{2} \left\langle k(k-1) \right\rangle + (1-f) \left\langle k \right\rangle$$

$$= (1-f)^{2} \left\langle \left\langle k^{2} \right\rangle - \left\langle k \right\rangle \right) + (1-f) \left\langle k \right\rangle$$

$$= (1-f)^{2} \left\langle k^{2} \right\rangle - (1-f)^{2} \left\langle k \right\rangle + (1-f) \left\langle k \right\rangle$$

$$= (1-f)^{2} \left\langle k^{2} \right\rangle - (-f^{2} + 2f - 1 + 1 - f) \left\langle k \right\rangle$$

$$= (1-f)^{2} \left\langle k^{2} \right\rangle + f(1-f) \left\langle k \right\rangle.$$

$$\langle k \rangle = (1 - f)^2 \langle k^2 \rangle + f(1 - f) \langle k \rangle$$

$$\langle k' \rangle_f = (1 - f) \langle k \rangle$$

$$\langle k'^2 \rangle_f = (1 - f)^2 \langle k^2 \rangle_f + f(1 - f) \langle k \rangle$$

$$\kappa$$

$$\kappa = \frac{\langle k'^2 \rangle_f}{\langle k' \rangle_f} = 2 .$$

So, for any Pk, with random removal

$$f_{\rm c} = 1 - \frac{1}{\frac{\langle k^2 \rangle}{2 \ln 1 - 1}}$$
Only depends on 1st and
2nd moment of p(k)

Denser -> more robust

 $f_{\rm c}^{\rm ER} = \mathbf{k} - \frac{1}{\langle k \rangle} \cdot$

Scale-free networks?

$$\kappa = \frac{\langle k^{2} \rangle}{\langle k \rangle} = \frac{(2 - \gamma)}{(3 - \gamma)} \frac{k_{\max}^{3 - \gamma} - k_{\min}^{3 - \gamma}}{k_{\max}^{2 - \gamma} - k_{\min}^{2 - \gamma}},$$

$$f_{c} = \begin{cases} 1 - \frac{1}{\frac{\gamma - 2}{3 - \gamma} k_{\min}^{\gamma - 2} k_{\max}^{3 - \gamma} - 1} & 2 < \gamma < 3 \\ 1 - \frac{1}{\frac{\gamma - 2}{\gamma - 3} k_{\min}^{\gamma - 1}} & \gamma > 3 \end{cases}$$

Removing lots of small nodes in SF

DOWED CDID

INTEDNET

MODILE DUONE CALLS

CCIENTIEIC COLLADODATION

ACTOD

Attacks

Critical threshold

Hub removal

max $k_{\rm max}$ Link removal $\frac{\int kp_k dk}{\langle k \rangle} = \frac{k}{\langle k \rangle} \int_{k'}^{k'} k^{-\gamma+1} dk$ $=\frac{1}{\langle k\rangle}\frac{1-\gamma}{2-\gamma}\frac{k_{\max 1}^{\gamma}-\gamma+2}{k_{\min 1}^{\gamma}}\frac{k_{\max 2}^{\gamma}-\gamma+2}{k_{\max 1}^{\gamma}}$ $\langle k \rangle \approx \frac{\gamma - 1}{\gamma - 2} k_{\min}$ $\tilde{f} = \left(\frac{k'_{\text{max}}}{r} \right)$ k_{\min} $\sim (1, -\gamma + 2^{f})^{\frac{2\gamma}{\gamma}}$

Attacks

Errors and attacks

Real networks

NETWORK	RANDOM FAILURES (REAL NETWORK)	RANDOM FAILURES (RANDOMIZED NETWORK
Internet	0.92	0.84
WWW	0.88	0.85
Power Grid	0.61	0.63
Mobile-Phone Call	0.78	0.68
Email	0.92	0.69
Science Collaboration	0.92	0.88
Actor Network	0.98	0.99
Citation Network	0.96	0.95
E. Coli Metabolism	0.96	0.90
Yeast Protein Interactions	0.88	0.66

Published: 27 July 2000

ATTACK

(REAL NETWORK)

0.16

0.12

0.20

0.20

0.04

0.27

0.55

0.76

0.49

0.06

Error and attack tolerance of complex networks

Réka Albert, Hawoong Jeong & Albert-László Barabási 🖂

Nature406, 378–382 (2000)Cite this article43kAccesses5505Citations75AltmetricMetrics

Achilles' heel of the Internet

Obesity Mice that eat more but weigh less Ocean anoxic events Not all at sea Cell signalling Fringe sweetens Notch

new on the market oligonucleotides

Cascades

. .

Observations

.

.

.

.

.

• • •

SOURCE	EXPONENT	CASCADE
Power grid (North America)	2.0	Power
Power grid (Sweden)	1.6	Energy
Power grid (Norway)	1.7	Power
Power grid (New Zealand)	1.6	Energy
Power grid (China)	1.8	Energy
Twitter Cascades	1.75	Retweets
Earthquakes	1.67	Seismic Wave
		7

p(s)

Cascades

Easier model

The branching model can be solved analytically, allowing us to determine the avalanche size distribution for an arbitrary p_k . If p_k is exponentially bounded, *e.g.* it has an exponential tail, the calculations predict $\alpha = 3/2$. If, however, p_k is scale-free, then the avalanche exponent depends on the power-law exponent _Y, following (Figure 8.22) [32, 33]

$$\alpha = \begin{cases} 3/2, & \gamma \ge 3 \\ \gamma/(\gamma - 1), & 2 < \gamma < 3 \end{cases}$$
(8.15)

Figure 8.22 The Avalanche Exponent

Pause

Walks in networks

- Simple process, well studied in finite dimensional lattices
- Simplest way to explore or search in a network
- Basic element of diffusion processes
- Basis of PageRank

Hypothesis = statistical equivalence of nodes with the same degree

$$d_{ij} = \frac{r}{k_i}$$

Rate out of i to j

 $r = \sum_{j \sim i} d_{ij}$ Total diffusion rate Out of I

$$\partial_t W_k(t) = -r W_k(t) + k \sum_{k'} p(k' | k) \frac{r}{k'} W_{k'}(t)$$

P: probability of having neighbour with degree k'

Walks in networks

$$\partial_t W_k(t) = -rW_k(t) + k \sum_{k'} p(k' | k) \frac{r}{k'} W_{k'}(t)$$

Uncorr. networks

$$p(k' | k) = \frac{k' p(k')}{\langle k \rangle}$$

$$\partial_t W_k(t) = -rW_k(t) + \frac{k}{\langle k \rangle} r \sum_{k'} p(k')W_k(t)$$

Finally, probability to find one walker in degree k:

Walks in (directed) networks PageRank

Previous ranking: crawl around a starting page and return the ranking based on the #matches to word query, index, etc **The PageRank algorithm:** major breakthrough based on idea that ranking depends on network topology "Google" defines the importance of each document by a combination of the probability that a random walker surfing the web will visit that document, and some heuristics based in the text disposition, [cit. Barrat/Barth/Vesp]

Probability that a random walker will

$$P_{R}(i) = \frac{q}{N} + (1 - q) \sum_{j} x_{ij} \frac{P_{R}(j)}{k_{out,j}}$$

Degree-block variables
$$k = (k_{in}, k_{out})$$

$$P_R(k) = \frac{1}{N_k} \sum_{i \in k} P_R(i)$$

$$P_R(k) = \frac{q}{N} + \frac{(1-q)}{N_k} \sum_{i \in k} \sum_{k'} \frac{1}{k'_{out}} \sum_{j \in k'} x_{ij} P_R(j)$$

Mean-field approx: $P_R(j) = P(k)$

$$P_{R}(k) = \frac{q}{N} + \frac{(1-q)}{N_{k}} \sum_{k'} \frac{P_{R}(k')}{k'_{out}} \sum_{i \in k} \sum_{j \in k'} x_{ij} = \frac{q}{N} + \frac{(1-q)}{N_{k}} \sum_{k'} \frac{P_{R}(k')}{k'_{out}} E_{k' \to k}$$

q =damping / teleportation

x_ij: adjacency

Walks in networks PageRank

$$P_{R}(k) = \frac{q}{N} + \frac{(1-q)}{N_{k}} \sum_{k'} \frac{P_{R}(k')}{k'_{out}} E_{k' \to k} \qquad E_{k'}$$

$$P_{R}(k) = \frac{q}{N} + (1-q) \frac{k_{in}}{\langle k_{in} \rangle} \sum_{k'} P_{R}(k') P(k') = \frac{q}{N}$$

PageRank: also to quantify importance of scientific papers

Uncorr. networks

 $P_{in}(\mathbf{k}'|\mathbf{k}) = \frac{k'_{out}P(\mathbf{k}')}{\langle k_{in} \rangle}$

$$\mathbf{k} = k_{in} P(\mathbf{k}) N \frac{E_{\mathbf{k}' \to \mathbf{k}}}{k_{in} P(\mathbf{k}) N}$$
$$= k_{in} P(\mathbf{k}) N P_{in}(\mathbf{k}' | \mathbf{k}),$$

Walks in networks

Laplacian

Undirected graphs:

- on infinite square lattice == continuous Laplacian
- L symmetric ==> spectrum is positive semidefinite $0 \le \lambda$
- The multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of the graph.
- The second smallest eigenvalue λ_1 is called the algebraic connectivity.
- It is non-zero only if the graph is formed of a single connected component.

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$$

La

Valks in networks
placian and return times

$$\partial_t p(i, t|i_0, 0) = -\sum_j L_{ij} p(j, t|i_0, 0) \quad p(i, 0|i_0, 0) = \delta_{ii_0} \qquad \sum_i L_{ij} = 0 \quad \rightarrow \quad \sum_i p(i, t|i_0, 0) = 1$$

Spectral density

 $\rho(\lambda) = \left\langle \frac{1}{N} \sum_{i=1}^{N} \delta(\lambda - \lambda_i) \right\rangle$

Laplace transform

$$\tilde{p}_{ii_0}(s) = \int_0^\infty dt e^{-st} p(i, t | i_0, 0).$$

Finally, rewrite as

e

$$s\tilde{p}_{ii_0}(s) - \delta_{ii_0} = -\sum_j L_{ij} \tilde{p}_{ji_0}(s) \qquad \sum_j \left(s\delta_{ij} + L_{ij}\right) \tilde{p}_{ji_0}(s) = \delta_{ii_0}.$$

Return time, definition

$$p_{0}(t) = \left\langle \frac{1}{N} \sum_{i_{0}} p(i_{0}, t | i_{0}, 0) \right\rangle.$$

$$\tilde{p}_{0}(s) = \left\langle \frac{1}{N} \sum_{i_{0}} \tilde{p}_{i_{0}i_{0}}(s) \right\rangle = \left\langle \frac{1}{N} \operatorname{Tr}\tilde{\mathbf{p}}(s) \right\rangle,$$

$$\tilde{p}_{0}(s) = \left\langle \frac{1}{N} \sum_{i} \frac{1}{s + \lambda_{i}} \right\rangle.$$

Laplace inverse transform

$$p_0(t) = \int_{c-i\infty}^{c+i\infty} ds e^{ts} \left\langle \frac{1}{N} \sum_j \frac{1}{s+\lambda_j} \right\rangle = \left\langle \frac{1}{N} \sum_{j=1}^{\infty} \frac{1}{s+\lambda_j} \right\rangle$$

Integration by parts

$$\int_0^\infty \mathrm{d}t e^{-st} \partial_t p(i, t | i_0, 0) = -p(i, 0 | i_0, 0) + s \,\tilde{p}_{ii_0}(s) = s \,\tilde{p}_{ii_0}(s)$$

$$\left|\sum_{j} e^{-\lambda_{j}t}\right\rangle, \qquad p$$

Or equivalently
$$p_0(t) = \int_0^\infty d\lambda e^{-\lambda t} \rho(\lambda).$$

Searching in networks

Fig. 8.4. Schematic comparison of various searching strategies to find the target vertex t, starting from the source s. A, Broadcast search; B, Random walk; C, Degree-biased strategy. The broadcast search finds the shortest path, at the expense of high traffic.

•

.

Finds shortest path, generated traffic: traffic $\propto N$

Not shortest path, less traffic: $T \propto N^{0.79}$ $\gamma = 2.1$

What about this?

Searching in small world networks

- Start from a D-dimensional hypercubic lattice:
- add a link node i, and connect to node j with at geographical distance r_{ij} with prob ~ $r^{-\alpha}$,
- Each node knows its own position and that of its neighbours.
- Greedy search process:
 - a message has to be sent to a certain target node t whose geographical position is known.
 - A node i receiving the message forwards it to the neighbor node j geographically closest to the target (min r_{it})

Kleinberg (2000a)

if $\alpha = D$, the delivery time scales as log²(N) with the size N of the network.

What is the dimension then of real networks? Are they navigable? Barrat/Barth/Vesp Chapter 8

What did we talk about today?

- Formalism of robustness
- Errors vs attacks
- Cascades (qualitatively)
- Walks and random walkers
- Pagerank
- Introduction to Laplacian

What didn't we talk about today?

- Math-y Cascades ...
- How to engineer robustness?
- Deeper Laplacian spectral theory
- Calculations of the spectral densities
- Specific search results
- Dynamical systems in general

