

Complexity in Social Systems AA 2023/2024 **Maxime Lucas** Lorenzo Dall'Amico

Multilayer Networks Examples

Tube map

Physics Reports 544 (2014) 1-122

Examples

S. Boccaletti et al. / Physics Reports 544 (2014) 1–122

Resume of topics and references						
Field	Торіс	References				
Social	Online communities	Pardus: [63,419–422] Netflix: [423,424] Flickr: [66,88,425] Facebook: [68,426–428] Youtube: [429] Other online communities: Merging multiple commun				
	Internet	[109,110,433]				
	Citation networks	DBLP: [31,33,434–439] Scottish Community Allian Politics: [68,441]				
	Other social networks	Terrorism: [23] Bible: [442] Mobile communication: [4				
Technical	Interdependent systems	Power grids: [25,81,444] Space networks: [445]				
	Transportation systems	Multimodal: [149,184] Cargo ships: [446] Air transport: [16,78]				
	Other technical networks	Warfare: [447]				
Economy	Trade networks	International Trade Netwo Maritime flows: [449]				
	Interbank market Organizational networks	[450] [451–453]				
Other applications	Biomedicine Climate Ecology Psychology	[454–459] [24,460] [64,461] [462]				

e: [440]

Zachary Karate Club Club

Formal definition

M. Zanin^{m,n}

$$\mathcal{M} = (\mathcal{G}, \mathcal{C})$$
 where $\mathcal{G} = \{G_{\alpha}; \alpha \in \{1, \dots, M\}\}$

$$G_{\alpha} = (X_{\alpha}, E_{\alpha})$$
 Intralayer

 $\mathcal{C} = \{E_{\alpha\beta} \subseteq X_{\alpha} \times X_{\beta}; \alpha, \beta \in \{1, \dots, M\}, \alpha \neq \beta\}$ Interlayer

Projected graph

$$proj(\mathcal{M}) = (X_{\mathcal{M}}, E_{\mathcal{M}}) \quad X_{\mathcal{M}} = \bigcup_{\alpha=1}^{M} X_{\alpha}, \quad E_{\mathcal{M}} = \left(\bigcup_{\alpha=1}^{M} X_{\alpha}, \cdots, X_{\alpha}\right)$$

Multiplex network

 $X_1 = X_2 = \cdots = X_M = X$ $E_{\alpha\beta} = \{(x, x); x \in X\}$

Mono-layer multiplex representation network

$$\tilde{\mathcal{M}} = (\tilde{X}, \tilde{E}) \quad \tilde{X} = \bigsqcup_{1 \le \alpha \le M} X_{\alpha} = \{x^{\alpha}; x \in X_{\alpha}\}$$

edges $\left(\bigcup_{\alpha=1}^{M} \{(x_{i}^{\alpha}, x_{j}^{\alpha}); (x_{i}^{\alpha}, x_{j}^{\alpha}) \in E_{\alpha}\}\right) \bigcup \left(\bigcup_{\alpha, \beta=1 \atop \alpha \ne \beta}^{M} \{(x_{i}^{\alpha}, x_{i}^{\beta}); x_{i} \in E_{\alpha}\}\right)$

 $X_{\alpha} = \{x_1^{\alpha}, \dots, x_{N_{\alpha}}^{\alpha}\}$ Nodes in layer $a_{ij}^{\alpha} = \begin{cases} 1 & \text{if } (x_i^{\alpha}, x_j^{\alpha}) \in E_{\alpha}, \\ 0 & \text{otherwise,} \end{cases}$

Interlayer connections $a_{ij}^{\alpha\beta} = \begin{cases} 1 & \text{if } (x_i^{\alpha}, x_j^{\beta}) \in E_{\alpha\beta}, \\ 0 & \text{otherwise.} \end{cases}$

X

$$\begin{pmatrix} I \\ J \\ = 1 \end{pmatrix} \bigcup \begin{pmatrix} M \\ \bigcup \\ \alpha, \beta = 1 \\ \alpha \neq \beta \end{pmatrix} .$$

Relations to other extended networks

- 1. Multiplex networks
- 2. Temporal networks
- 3. Interacting networks

Sequence of graphs

Observables

Degree vector

$$\mathbf{k}_i = (k_i^{[1]}, \ldots, k_i^{[M]}),$$

Overlapping degree

Eigenvector centrality

Independent layer eig-centrality $\mathbf{c}_i = (c_i^{[1]}, \dots, c_i^{[M]}) \in \mathbb{R}^M, \qquad C = \left(\begin{array}{c|c} \mathbf{c}_1^T & \mathbf{c}_2^T & \dots & \mathbf{c}_M^T \end{array}\right) \in \mathbb{R}^{N \times M}.$

Uniform eigenvector-like centrality

 $\widetilde{A} = \sum_{\alpha=1}^{M} (A^{[\alpha]})^{\mathrm{T}},$

local heterogeneous eigenvector-like centrality

$$A_{\alpha}^{\star} = \sum_{\beta=1}^{M} w_{\alpha\beta} (A$$

Clustering coefficient

Degree entropy

$$\sum_{i=1}^{n} \frac{k_i^{\alpha}}{o_i} \ln\left(\frac{k_i^{\alpha}}{o_i}\right),$$

 $A^{\left[\beta\right]})^{\mathrm{T}}.$

Layer clustering coefficient $\mathbf{C}_{\mathcal{M}}^{ly}(i) = \frac{2\sum_{\alpha=1}^{M} |E_{\alpha}(i)|}{\sum_{\alpha=1}^{M} |\mathcal{N}_{\alpha}^{*}(i)|(|\mathcal{N}_{\alpha}^{*}(i)|-1)}.$

Observables

Walks $\{x_1^{\alpha_1}, \ell_1, x_2^{\alpha_2}, \ell_2, \ldots, \ell_{q-1}, x_q^{\alpha_q}\}, \quad \ell_r =$

Characteristic path lengthEfficiencyInterdepend $L(\mathcal{M}) = \frac{1}{N(N-1)} \sum_{u,v \in X_{\mathcal{M}}} d_{uv},$ $E(\mathcal{M}) = \frac{1}{N(N-1)} \sum_{u,v \in X_{\mathcal{M}}} \frac{1}{d_{uv}}.$ $\lambda_i = \sum_{j \neq i} \frac{\psi_{ij}}{\sigma_{ij}},$

 $\mathcal{L} = \left(\begin{array}{cccc} D_1 \mathbf{L} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & D_2 \mathbf{L}^2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \end{array} \right)$ Supra-laplacian for multilayer networks $\dots D_M \mathbf{L}$ 0

$$\begin{pmatrix} x_r^{\alpha_r}, x_{r+1}^{\alpha_{r+1}} \end{pmatrix} \in \mathscr{E}. \qquad \mathscr{E} \in E(\mathscr{M}) \\ E(\mathscr{M}) = \{E_1, \dots, E_M\} \bigcup \mathscr{C}.$$

Interdependence

 $\sigma_{ii} = \#$ shortest paths between ij ψ_{ii} = # shortest paths between ij in >2 layers

1 when all shortest paths use edges in at least two layers 0 when all shortest paths use only one layer of the system.

$$\begin{pmatrix} \mathbf{M} \end{pmatrix} + \begin{pmatrix} \sum_{\beta} D_{1\beta} \mathbf{I} & -D_{12} \mathbf{I} & \dots & -D_{1M} \mathbf{I} \\ -D_{21} \mathbf{I} & \sum_{\beta} D_{2\beta} \mathbf{I} & \dots & -D_{2M} \mathbf{I} \\ \vdots & \vdots & \ddots & \vdots \\ -D_{M1} \mathbf{I} & -D_{M2} \mathbf{I} & \dots & \sum_{\beta} D_{M\beta} \mathbf{I} \end{pmatrix}$$

Multilayer Networks Correlations

Full characterisation of matrix $P(k^{\alpha}, k^{\beta})$

$$P(k^{\alpha}, k^{\beta}) = \frac{N(k^{\alpha}, k^{\beta})}{N},$$

Average degree in layer α conditioned on the degree of the node in layer β

$$\bar{k}^{\alpha}(k^{\beta}) = \sum_{k^{\alpha}} k^{\alpha} P(k^{\alpha} | k^{\beta}) = \frac{\sum_{k^{\alpha}} k^{\alpha} P(k^{\alpha}, k^{\beta})}{\sum_{k^{\alpha}} P(k^{\alpha}, k^{\beta})}$$

Spearman degree correlations

$$r_{\alpha\beta} = \frac{\left\langle k_{i}^{\left[\alpha\right]}k_{i}^{\left[\beta\right]}\right\rangle - \left\langle k_{i}^{\left[\alpha\right]}\right\rangle \left\langle k_{i}^{\left[\beta\right]}\right\rangle,}{\sigma_{\alpha}\sigma_{\beta}}$$
$$\sigma_{\alpha} = \sqrt{\left\langle k_{i}^{\left[\alpha\right]}k_{i}^{\left[\alpha\right]}\right\rangle - \left\langle k_{i}^{\left[\alpha\right]}\right\rangle^{2}}$$

Activity of node i in layer alpha: 1 if $k[\alpha]$ i > 0 and 0 otherwise

$$b_{i,\alpha} = 1 - \delta_{0,k_i^{[\alpha]}} = 1 - \delta_{0,\sum_{i=1}^{N} a_{ii}^{\alpha}},$$

Reducibility

Von Neumann entropy "Mixedness" (=0 if pure state) N $h_A = -\operatorname{Tr}\left[\mathcal{L}_G \log_2 \mathcal{L}_G\right] \qquad h_A = -\sum_{i=1}^{i} \lambda_i \log_2(\lambda_i),$ $\mathcal{L}_G = c \times (D - A)$ $\operatorname{Tr}(\mathcal{L}_G) = 1$ 1 layer - 1 "state" $c = 1/(\sum_{i,i\in V} a_{ij}) = \frac{1}{2K}$ Reduction $\mathcal{A} = \{A_1, A_2, \dots, A_M\}$ Aggregate some of the layers $\mathcal{C} = \{C_1, C_2, \dots, C_X\} \quad X < M$ Larger if more distinguishable VN entropy of multilayer network from fully aggregated Relative entropy $\bar{H}(\mathcal{C}) = \frac{H(\mathcal{C})}{\mathbf{v}} = \frac{\sum_{\alpha=1}^{X} h_{C^{[\alpha]}}}{\mathbf{v}}$ $q(\mathcal{C}) = 1 - \frac{H(\mathcal{C})}{h_{\Lambda}}$ Mopt corresponds to argmax q(C) $M - M_{\rm opt}$ $\chi(\mathcal{A})$ 0 if cannot be reduced 1 if reducible to single layer Reducibility

Entropy Aggregated graph

$$\mathcal{D}_{KL}(\boldsymbol{\rho} || \boldsymbol{\sigma}) = \mathrm{Tr} \big[\boldsymbol{\rho} \big(\log_2(\boldsymbol{\rho}) - \log_2(\boldsymbol{\sigma}) \big) \big]$$

$$\mathcal{D}_{\text{JS}}(\boldsymbol{\rho}||\boldsymbol{\sigma}) = \frac{1}{2}\mathcal{D}_{\text{KL}}(\boldsymbol{\rho}||\boldsymbol{\mu}) + \frac{1}{2}\mathcal{D}_{\text{KL}}(\boldsymbol{\sigma}||\boldsymbol{\mu}) = h(\boldsymbol{\mu}) - \frac{1}{2}[h(\boldsymbol{\rho}) + h(\boldsymbol{\mu})] = \frac{1}{2}[h(\boldsymbol{\rho}) + h(\boldsymbol{\mu})]$$

Multilayer Networks Reducibility

('Ass') and suppressive ('GSup'), additive ('GAdd') or synthetic genetic ('GSyn') interaction.

\sim	(OY	

Network	N	М	M opt	max[<i>q</i> (•)]	χ
Arabidopsis	6981	7	5	0.436	0.33
Bos	326	4	3	0.494	0.33
Candida	368	7	4	0.527	0.50
C. elegans	3880	6	4	0.390	0.40
Drosophila	8216	7	5	0.426	0.33
Gallus	314	6	4	0.505	0.40
Human HIV-1	1006	5	2	0.499	0.75
Mus	7748	7	6	0.376	0.17
Plasmodium	1204	3	2	0.500	0.50
Rattus	2641	6	4	0.504	0.40
S. cerevisiae	6571	7	4	0.115	0.50
S. pombe	4093	7	4	0.197	0.50
Xenopus	462	5	3	0.424	0.50
Arxiv coauthorship	14065	13	11	0.231	0.17
Terrorist network	78	4	2	0.239	0.67
FAO Trade network	184	340	182	0.354	0.47
London Tube	369	13	12	0.441	0.08
Airports Europe	1064	175	165	0.667	0.06
Airports Asia	1130	213	202	0.653	0.05
Airports North America	2040	143	136	0.686	0.05

Table 1 | Reducibility of empirical multilayer networks.

Number of nodes (*N*), number of layers in the original system (*M*), number of layers (M_{opt}) corresponding to the maximal value of the quality function (max[$q(\bullet)$]) obtained through the greedy hierarchical clustering procedure, and the value of the reducibility (χ) for several biological, social, economical and technological multilayer networks. Notice that the structure of the three continental air networks and of the London metropolitan transportation system cannot be substantially reduced, in accordance with the fact that in these systems layer redundancy is purposedly avoided. Conversely, social and biological systems exhibit higher levels of redundancy and allow for the merging of up to 75% of the layers.

b

Fruit, dried

Nuts, prepared

Roots and tubers

Resilience: Modelling a blackout in Italy (September 2003)

Letter | Published: 15 April 2010

Catastrophic cascade of failures in interdependent networks

<u>Sergey V. Buldyrev</u> [™], <u>Roni Parshani</u>, <u>Gerald Paul</u>, <u>H. Eugene Stanley</u> & <u>Shlomo Havlin</u>

<u>Nature</u> **464**, 1025–1028 (2010) Cite this article

32k Accesses | 3107 Citations | 99 Altmetric | Metrics

Multilayer Networks Resilience

Nodes are layers can be interdependent: failure in one induces failure in the other

in presence of interdependencies, the robustness of multilayer networks can be evaluated by calculating the size of their mutually connected giant component (MCGC) Letter | Published: 15 April 2010

Catastrophic cascade of failures in interdependent networks

<u>Sergey V. Buldyrev</u> [™], <u>Roni Parshani</u>, <u>Gerald Paul</u>, <u>H. Eugene Stanley</u> & <u>Shlomo Havlin</u>

Nature 464, 1025–1028 (2010) Cite this article

32k Accesses | 3107 Citations | 99 Altmetric | Metrics

New result: **Multilayer SF are less resilient!**

https://github.com/nkoub/multinetx https://github.com/bolozna/Multilayer-networks-library https://github.com/manlius/muxViz

Networks with higher-order (group) interactions Hypergraphs and simplicial complexes

Physics Reports 874 (2020) 1-92

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Networks beyond pairwise interactions: Structure and dynamics

Federico Battiston ^{a,*}, Giulia Cencetti ^b, Iacopo Iacopini ^{c,d}, Vito Latora ^{c,e,f,g}, Maxime Lucas ^{h,i,j}, Alice Patania ^k, Jean-Gabriel Young ¹, Giovanni Petri ^{m,n}

(Pairwise) networks are great

Going beyond pairwise Examples

- Co-authorship
- Chemical reactions
- Social interactions
- Etc.

Three 2-author papers

One 3-author paper

Two possible representations

Hypergraphs

Definition: (V, E) set of nodes V and hyper edges E

A hyper edge is a set of any number of nodes e.g. {1, 2, 3}

Simplicial complexes

Special case of hyper graphs with one extra condition: All subfaces must be included

Α

G

"Order" of interaction = size - 1

Network

Building blocks:

Link with other types networks Bipartite, motifs, and multilayers

- > BIPARTITE GRAPH The top layer describes groups
- > NETWORK MOTIFS
- > CLIQUES Special type of motifs

е

I_iα in row i and column α is 1 if node i and edge α are incident, and zero otherwise

 $P = I^T I$,

 $A = II^T - D$

Measures

- Degree
- Walks

Current research

- Models and phenomenology (sync, contagion, etc)
- Reducibility?
- Information theory: new scales?
- Coupling functions
- XGI

Before showing you: some synchronization

Synchronization

Story time: Christiaan Huygens (XVII)

noticed that two mechanical clocks when attached to a beam synchronize the movement of their pendula.

Experiment with metronomes

What is needed for sync?

Sync everywhere in nature

Metronomes can by any oscillator or rhythms

Examples:

- neurons firing
- Circadian rhythms
- fireflies flashing

Refs: "Sync: The Emerging Science of Spontaneous Order" by Steven Strogatz "Synchronization: A Universal Concept in Nonlinear Sciences" by Pikovsky, Rosenblum, and Kurths

Simplest oscillator: just a phase

has a constant frequency.

Best visualized in the x-y-plane as a dot the moves around in a circle at constant speed.

 $\theta = \omega$

Minimal case for sync: 2 oscillators

$$\dot{\theta}_1 = \omega_1 + \frac{\gamma}{2}\sin(\theta_2 - \theta_1)$$
$$\dot{\theta}_2 = \omega_2 + \frac{\gamma}{2}\sin(\theta_1 - \theta_2)$$

Natural frequencies w1 and w2 Coupling strength \gamma

Condition for sync: constant phase diff

We define the phase difference

$$\psi = \theta_2 - \theta_1$$

Which evolves as

$$\dot{\psi} = \Delta \omega - \gamma \sin(\psi)$$

With the frequency mismatch $\Delta \omega = \omega_2 - \omega_1$

Condition for sync: fixed points

 $\dot{\psi} = \Delta \omega - \gamma \sin(\psi) \equiv 0$

 $\dot{\psi}(\Delta\omega(t))$

Condition for sync: large coupling strength or small frequency mismatch

Many oscillators: Kuramoto model

$\dot{\theta}_i = \omega_i + \frac{\gamma}{N} \sum_j A_{ij} \sin(\theta_j - \theta_i)$

With the adjacency matrix of the network A_{ii}

Dynamical regimes

Go play at https://www.complexity-explorables.org/explorables/ride-my-kuramotocycle/

Measure sync: order parameter

$Z = Re^{i\Phi} = \frac{1}{N} \sum_{i} e^{i\theta_{i}}$

All-to-all: driving
$$\dot{\theta}_i = \omega_i + \frac{\gamma}{N} \sum_j \sin(\theta_j - \theta_j)$$

Let's rewrite the second term

$$Re^{i\Phi}e^{-i\theta_i} = \frac{1}{N}\sum_j e^{i\theta_j}e^{-i\theta_i}$$

 $\theta_i = \omega_i + \gamma R \sin(\Phi - \theta_i)$

Looks like the 2-oscillator equation from before! Defence on other oscillators j now implicit in R

by order parameter

θ_i) All-to-all: $A_{ii} = 1$

By multiplying both sides by $e^{-i\theta_i}$

By taking the Imaginary part And plugging into 1st eq.

Each oscillator is driven by the phase of the order parameter With a strength proportional to R

Back to group interactions and current research

Multiorder Laplacian

Extended Kumamoto with group interactions

$$\begin{split} \dot{\theta}_i &= \omega + \frac{\gamma_1}{\langle K^{(1)} \rangle} \sum_{j=1}^N A_{ij} \sin(\theta_j - \theta_i) \\ &+ \frac{\gamma_2}{2! \langle K^{(2)} \rangle} \sum_{j,k=1}^N B_{ijk} \sin(\theta_j + \theta_k - 2\theta_i) \\ &+ \frac{\gamma_3}{3! \langle K^{(3)} \rangle} \sum_{j,k,l=1}^N C_{ijkl} \sin(\theta_j + \theta_k + \theta_l - 3) \\ &+ \cdots \\ &+ \frac{\gamma_D}{D! \langle K^{(D)} \rangle} \sum_{j_1, \dots, j_D = 1}^N M_{ij_1, \dots, j_D} \sin\left(\sum_{m=1}^D \theta_{j_m}\right) \end{split}$$

Multiorder Laplacian for synchronization in higher-order networks

Maxime Lucas⁽⁰⁾,^{1,2,3,*} Giulia Cencetti⁽⁰⁾,⁴ and Federico Battiston⁽⁰⁾,[†]

Multiorder Laplacian

Linearised around sync

$$\begin{split} \delta \dot{\psi}_i &= + \frac{\gamma_1}{\langle K^{(1)} \rangle} \sum_{j=1}^N A_{ij} (\delta \psi_j - \delta \psi_i) \\ &+ \frac{\gamma_2}{2! \langle K^{(2)} \rangle} \sum_{j,k=1}^N B_{ijk} (\delta \psi_j + \delta \psi_k - 2\delta \psi_i) \\ &+ \frac{\gamma_3}{3! \langle K^{(3)} \rangle} \sum_{j,k,l=1}^N C_{ijkl} (\delta \psi_j + \delta \psi_k + \delta \psi_l + \delta$$

Multiorder Laplacian for synchronization in higher-order networks

Maxime Lucas⁽⁰⁾,^{1,2,3,*} Giulia Cencetti⁽⁰⁾,⁴ and Federico Battiston⁽⁰⁾,[†]

$$L_{ij}^{(d)} = dK_i^{(d)} \delta_{ij} - A_{ij}^{(d)},$$

$$K_i^{(d)} = \frac{1}{d!} \sum_{j_1, \dots, j_D = 1}^N M_{ij_1 \dots j_D},$$

$$A_{ij}^{(d)} = \frac{1}{(d-1)!} \sum_{j_2, \dots, j_D = 1}^N M_{ij_1 \dots j_D}.$$

Effect on sync Larger groups sync faster - higher-order stabilise sync

Hypergraphs vs simplicial complexes They sync differently nature communications

Article

https://doi.org/10.1038/s41467-023-3719

Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes

Received: 5 July 2022

Yuanzhao Zhang ^{1,5} , Maxime Lucas ^{2,3,5} & & Federico Battiston ⁴

Accepted: 3 March 2023

Always better sync with triangles?

$$\dot{\theta}_i = \omega + \frac{\gamma_1}{\langle k^{(1)} \rangle} \sum_{j=1}^n A_{ij} \sin(\theta_j - \theta_i) + \frac{\gamma_2}{\langle k^{(2)} \rangle} \sum_{j,k=1}^n \frac{1}{2} B_{ijk} \frac{1}{2} \sin(\theta_j + \theta_k)$$

 $\gamma_1 = 1 - \alpha$, $\gamma_2 = \alpha$, $\alpha \in [0, 1]$.

 $(k - 2\theta_i)$.

Simplicial Complexes Rich gets richer

Simplicial contagion

Explosive transition!

Simplicial driven simple contagion Unidirectional but also explosive

Simplicial driven simple contagion

Simplicial driver

Review materials

Structure and dynamics: basics

REVIEWS OF MODERN PHYSICS

Recent Accepted Authors Referees Search Press

About

Staff 🦻

Statistical mechanics of complex networks

Réka Albert and Albert-László Barabási Rev. Mod. Phys. 74, 47 – Published 30 January 2002

http://networksciencebook.com/

M.E.J. Newman

OXFORD

Dynamical Processes on Complex Networks

Alain Barrat, Marc Barthélemy, Alessandro Vespignani

Review materials

Multilayer networks

Journal of Complex Networks (2014) 2, 203–271 doi:10.1093/comnet/cnu016 Advance Access publication on 14 July 2014

Multilayer networks

MIKKO KIVELÄ

Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

ALEX ARENAS

Departament d'Enginyeria Informática i Matemátiques, Universitat Rovira I Virgili, 43007 Tarragona, Spain

MARC BARTHELEMY

Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France and Centre d'Analyse et de Mathématiques Sociales, EHESS, 190-198 avenue de France, 75244 Paris, France

JAMES P. GLEESON

MACSI, Department of Mathematics & Statistics, University of Limerick, Limerick, Ireland

YAMIR MORENO

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain and Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain

AND

MASON A. PORTER

Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK and CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK [†]Corresponding author. Email: porterm@maths.ox.ac.uk

PHYSICAL REVIEW X 3, 041022 (2013)

Mathematical Formulation of Multilayer Networks

Manlio De Domenico,¹ Albert Solé-Ribalta,¹ Emanuele Cozzo,² Mikko Kivelä,³ Yamir Moreno,^{2,4,5} Mason A. Porter,⁶ Sergio Gómez,¹ and Alex Arenas¹

The structure and dynamics of multilayer networks

S. Boccaletti^{a,b,*}, G. Bianconi^c, R. Criado^{d,e}, C.I. del Genio^{f,g,h}, J. Gómez-Gardeñesⁱ, M. Romance^{d,e}, I. Sendiña-Nadal^{j,e}, Z. Wang^{k,l}, M. Zanin^{m,n}

Annual Review of Condensed Matter Physics Multilayer Networks in a Nutshell

Alberto Aleta^{1,2} and Yamir Moreno^{1,2,3}

¹Institute for Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; email: albertoaleta@gmail.com, yamir.moreno@gmail.com

²Department of Theoretical Physics, Universidad de Zaragoza, 50009 Zaragoza, Spain ³Institute for Scientific Interchange (ISI) Foundation, 10126 Torino, Italy

Review materials

Higher-order networks

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Networks beyond pairwise interactions: Structure and dynamics

Federico Battiston^{a,*}, Giulia Cencetti^b, Iacopo Iacopini^{c,d}, Vito Latora^{c,e,f,g}, Maxime Lucas ^{h,i,j}, Alice Patania ^k, Jean-Gabriel Young¹, Giovanni Petri ^{m,n}

The physics of higher-order interactions in complex systems

Federico Battiston¹^{III}, Enrico Amico^{2,3}, Alain Barrat¹, Ginestra Bianconi^{6,7}, Guilherme Ferraz de Arruda¹⁰⁸, Benedetta Franceschiello^{19,10}, Iacopo Iacopini¹⁰¹, Sonia Kéfi^{11,12}, Vito Latora ^{6,13,14,15}, Yamir Moreno ^{8,15,16,17}, Micah M. Murray ^{9,10,18}, Tiago P. Peixoto^{1,19}, Francesco Vaccarino²⁰ and Giovanni Petri^{8,21}

WHAT ARE HIGHER-ORDER NETWORKS?*

CHRISTIAN BICK[†], ELIZABETH GROSS[‡], HEATHER A. HARRINGTON[§], AND MICHAEL T. SCHAUB¶

Check for updates

J Comput Neurosci (2016) 41:1-14 DOI 10.1007/s10827-016-0608-6

Two's company, three (or more) is a simplex

Algebraic-topological tools for understanding higher-order structure in neural data

Chad Giusti^{1,2} · Robert Ghrist^{1,3} · Danielle S. Bassett^{2,3}

SIAM REVIEW Vol. 63, No. 3, pp. 435–485 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

The Why, How, and When of **Representations for Complex Systems***

Leo Torres Ann S. Blevins[‡] Danielle Bassett[‡] Tina Eliassi-Rad[†]

Springer Link

