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Fig. 55. (Color online) Commodity diversity and nodal regions in the maritime flow network. Nodes represent ports, pairwise connected by links when a
commodity is transported between them. Different commodities are considered, thus making this graph a multilayer network. In order to represent this
heterogeneity, links are colored according to the number of commodity types traveling between ports. Furthermore, both nodes and links sizes represent
the corresponding traffic share.
Source: Reprinted figure from Ref. [449].
© 2013, with permission from Elsevier.

the importance of themultilayer nature of these networkswas recognized almost three decades ago [494,495], only recently
this problem has been mathematically tackled.

One of the first works analyzing organizational networks as multilayer structures is Ref. [451]. There, Authors analyzed
more than 6.000 Research&Development andmore than 6.500Management &Development alliances involving 1.000 biotech
firms in the United States. The time window considered covers over 30 years, in which data were available quarterly, thus
enabling the construction of a 120-layers temporal network. The underlying hypothesis is that the actions of a given firm
can be better understood if one takes into account changes in the network structure, like the firm position (centrality). The
main result suggests that biotech firms act following a process of preferential attachment, i.e. organizations are more likely
to form ties with organizations of similar institutional and structural status.

Themultiplex paradigm has also been used to study the interactions between organizations using Information and Com-
munications Technology (ICT) firms for development goals, i.e. the use of ICTs as a tool for empowering less developed
countries [452]. Specifically, two nodes can be connected when the corresponding organizations collaborate in implemen-
tation or knowledge-sharing projects, thus creating a two-layers network. In Ref. [452], the studied data set comprised 323
projects between years 1997 and 2005, 211 of which were implementation projects and 112 knowledge-sharing projects,
for a total of 752 organizations. Results indicate that the existence of a link in one layer is influenced by several factors: the
presence of the corresponding link in the other layer, the presence of a common third-party, or the centrality of connected
nodes, among others.
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Figure 3
The multilayer representation of the transport system of Madrid. The first layer (blue nodes) represents the tram system, the second
layer ( pink nodes) the metro system, and the third layer (black nodes) the bus system. Vertical links connect stops of different transport
modes that are within a 150-m radius. Figure adapted from Reference 15 with permission of the authors.

4.4. Multilayer Networks and the Human Brain
The traditional tools used to analyze the architecture of the human brain have been focused on
single scales. Following Betzel et al. (81), we can distinguish three scales in brain networks, namely,
the spatial scale, which refers to the granularity at which the network is defined; the temporal
scale, ranging from submiliseconds to the entire lifespan; and the topological scale, ranging from
individual nodes to the network as a whole. Most analysis of the human brain network done so far
fix these three characteristics to a given value. However, now it is possible to address problems like
the time-varying connectivity of the brain using multilayer networks. Furthermore, if one tackles
the same problems, such as identifying central nodes, in single-layer brain networks and multilayer
networks the results are quite different (82). Similarly, Battiston et al. (83) studied motif structures
in a multilayer network composed of the anatomical and functional networks of the brain and
found joint anatomofunctional motifs that differ from those found in monoplex networks.

4.5. Multilayer Networks in Economy
The multilayer formulation allows for novel approaches to the study of the dynamics of the
economy. Musmeci et al. (84) applied the multilayer approach to study the structure of financial
markets by building a multilayer network in which each layer represents the same data but the
links are constructed using different correlation measures: Pearson, Kendall, Tail, and Partial
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a b s t r a c t

In the past years, network theory has successfully characterized the interaction among
the constituents of a variety of complex systems, ranging from biological to technological,
and social systems. However, up until recently, attention was almost exclusively given to
networks in which all components were treated on equivalent footing, while neglecting all
the extra information about the temporal- or context-related properties of the interactions
under study. Only in the last years, taking advantage of the enhanced resolution in real
data sets, network scientists have directed their interest to the multiplex character of
real-world systems, and explicitly considered the time-varying and multilayer nature
of networks. We offer here a comprehensive review on both structural and dynamical
organization of graphs made of diverse relationships (layers) between its constituents,
and cover several relevant issues, from a full redefinition of the basic structural measures,
to understanding how the multilayer nature of the network affects processes and
dynamics.
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Table 6
Resume of the main application topics, and related references.

Resume of topics and references

Field Topic References

Social

Online communities

Pardus: [63,419–422]
Netflix: [423,424]
Flickr: [66,88,425]
Facebook: [68,426–428]
Youtube: [429]
Other online communities: [54,89,430]
Merging multiple communities: [122,123,
431,432]

Internet [109,110,433]
Citation networks DBLP: [31,33,434–439]

Other social networks

Scottish Community Alliance: [440]
Politics: [68,441]
Terrorism: [23]
Bible: [442]
Mobile communication: [443]

Technical

Interdependent systems Power grids: [25,81,444]
Space networks: [445]

Transportation systems
Multimodal: [149,184]
Cargo ships: [446]
Air transport: [16,78]

Other technical networks Warfare: [447]

Economy
Trade networks International Trade Network: [70,71,448]

Maritime flows: [449]
Interbank market [450]
Organizational networks [451–453]

Other applications

Biomedicine [454–459]
Climate [24,460]
Ecology [64,461]
Psychology [462]

After this first attempt, White et al. proposed an extension of the classical work by Nadel and Fortes [464] to perform
a quantitative analysis of multilayer social networks [465]. A simple three-layer structure is considered, where nodes
represent biomedical researchers specialized in the neural control of food and water intake; the three layers respectively
represent the existence of a bidirectional personal tie, an unidirectional awareness, and the absence of awareness [466].
Notice that this three-layer structure contains information that, in modern complex network theory, would be synthesized
into a single directed network, as the third layer is the complementary of the second. Using this network as a test bed, they
proposed amethod for detecting blocks that are coherent across the different layers: in otherwords, they had just introduced
the first community detection algorithm. Along this line of research, Greiger and Pattison in Ref. [467] analyzed the
multilayer social structure reported in Ref. [468], characterized by business and marriage relationships between important
families from Florence in the fifteenth century. Authors showed how a personal hierarchy, comprising information from both
layers, can be used to create meaningful partitions of the graph.

Finally, it is worth concluding this short review on the classical social applications by presenting the work proposed in
Ref. [469]. Authors argued that an analysis of the health condition in old people, e.g. their resilience to external shocks, can
be performed only when multiple networks are simultaneously considered, like living arrangements (i.e. ties created by the
residence type), family, or organizations like church or voluntary associations.

7.1.2. Online communities
Information and communications technology (ICT) is behind the boost experienced in the last decade by the online

communities. ICT favors users’ interactions through the sharing of multiple contents, from tastes to photos and videos,
and at the same time it fulfills one of themost basic social needs: interpersonal communication. On the other hand, all those
communication exchanges are stored in a digital support: researchers can thus find plenty of information for analyzing
social behaviors, and for representing the wide variety of human interactions under a multilayer framework.

The Pardus social game. One of themost interesting online community data sets has been provided by Pardus, an online game
inwhichmore than 300.000 players live in a virtual, futuristic universe, exploring and interactingwith others, pursuing their
personal goals by means of different communication channels ranging from instantaneous one-to-one communications,
e.g. e-mail and personal messages, while others imply a more stable relationship (friendship, cooperation, attacks, and so
forth) [470].

Several papers have used this data set to explore whether particular network topological features were present. For
instance, Ref. [63] extracted a six-layers structure, respectively representing friendship or enmity relations between
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Fig. 51. Link overlap (Jaccard coefficient), degree correlation and rank correlation for all pairs of layers in the Pardus social game network. E, enmity; F,
friendship; A, attack; T, trade; C, communication; and B, bounty. Pairs of equal connotation (positive–positive and negative–negative) are marked with a
gray background.
Source: Reprinted figure from Ref. [63]. Courtesy of S. Thurner.

pairs of players, private messages exchange, trading activities, the presence of one-to-one aggressive acts, and placing
head money (bounties) on other players. Different characteristics were found for each layer: specifically, negatively
connoted (i.e. aggressive) actions are characterized by power-law topologies, while positive ones exhibit a higher clustering
coefficient. Furthermore, different layers interact in a non-trivial way: for instance, there is a strong overlap between
communication and friendship networks, but also between communication and aggression, and between communication
and friendship — see Fig. 51. Ref. [419] expands further those results, by considering the time evolution of such a multilayer
network. The network dynamics follows some well-known processes, like triadic closure and network densification.
Furthermore, it seems that the Dunbar conjecture is confirmed [471], as out-degrees are limited at around 150 connections.
More recently, the effect of the user’s gender was tackled in Ref. [420], demonstrating that the structural properties of the
layers are different for men and women, especially when the interaction time scale is considered.

The problem of the triadic closure has more recently been addressed in Ref. [421], through the analysis of a Pardus data
set composed of friendship, communication and trading relationships. Specifically, a network growth model is presented,
in which links are either added to form a closed triangle with probability r , or following a standard preferential attachment
mechanism [385] with probability 1 � r . Such a simple model is yet able to reproduce most of the topological features of
the original multilayer network, thus suggesting that both dynamics compete in the real system.

Finally, Ref. [422] tackles the problem of detecting elite structures in the Pardus network, i.e. subgroups of individuals
that have the ability of influencing the behavior of others. This is accomplished by means of a modified k-core algorithm.
Results indicate that different layer projections can be used to predict how players will perform socially, e.g. their leadership
or wealth.

Netflix. Netflix, Inc. is a US-based company specialized in video rental and online streaming. When users navigate in the
website, for instance to select the next content they want to watch, an advance recommender system [472] analyzes their
tastes and suggests a set of videos expected to be to their liking. In 2006, with the aim of improving this recommendation
system and position it above competitor ones, Netflix disclosed a large data set, includingmillions of movie ratings assigned
by users [473].

Two works [423,424] have examined this data set by considering its structure as a multilayer network. Specifically, the
initial bipartite network (users can only be connected to movies) is projected into a movie’s network, i.e. where nodes
represent movies, pairwise connected when a single user rated both of them. Furthermore, information about ratings
has been used to organize links in three different layers: positive, negative and mixed ratings. The resulting three layers
have different characteristics, which are lost when the global projection is considered. For instance, positive and negative
networks display a high clustering coefficient, indicating that users tend to like (or dislike) groups of similar movies; on the
other hand, mixed ratings create more heterogeneous structures, characterized by larger but sparser communities.

Flickr. Flickr is a worldly recognized online community, specialized in the hosting and sharing of multimedia content like
photos and videos. In 2013, the popularity of this web service was such that counted more than 87 million registered
users, and 3.5 million new images uploaded daily. Due to the large quantity of information available about interactions
between users, it is not a surprise that several studies have leveraged on Flickr to validate network analyzes, both applied
(e.g. automatic assignation of tags to photos by means of community detection algorithms [474]) and theoretical (as
validating network growing mechanisms against real data [475]).

Recently, three works have focused on the multilayer structure of the Flickr community. While nodes always represent
users, thesemay be linked through different types of relations. Specifically, Authors identify 9 of them, spanning from direct
user friendship, to common comments or common tag usage.

Overlap in Pardus

Zachary Karate Club Club
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Fig. 54. (Color online) Example of an heterogeneous mobile communication network. The battlefield can be seen as a set of resources, e.g. tanks, soldiers,
or even satellites, which require to continuously transmit tactical information to the others. Due to the different characteristics and capabilities of each
resource, multiple communication networks are deployed (as, for instance, satellite, UHF or VHF links), making the system a multilayer network.
Source: Reprinted figure from Ref. [447]. Courtesy of P. Lubkowski.

but relying on a different data set: the UNCOMTRADE, collected by the United Nations, which includes information for 94
countries starting from year 1962.

A different approach to trade analysis has been proposed in Ref. [449] regarding the study of maritime flows. Extending
the large research body devoted to the study of maritime flows by means of standard complex networks [446,486,487],
Ref. [449] presents a model where ports (nodes) are connected through five different layers, representing the five main
categories of commodities exchanged in maritime business: liquid bulk (i.e. crude oil, oil products, chemicals, etc.), solid
bulk (like aggregates, cement, or ores), containers, passengers/vehicles and general cargo. Data have been extracted from
the Lloyd’s Voyage Records, covering themonths of October andNovember 2004. An inspection of this disaggregated network
suggests that most networks measures, like centrality or clustering, exhibit strong sensitivity to the type of commodity
traded in a given set of ports. The most diversified ports are on average, the bigger and more dominant they are in the
network, while they also connect over greater physical distances than more specialized ports — see Fig. 55.

7.3.2. Interbank market
The 2008 financial crisis has raised the interest of the scientific community toward the understanding of the complex

system emerging from the interaction between financial institutions and markets [488–490]. Most contributions have
focused on the interbank market, where nodes represent financial institutions, and links credit relations between two
counterparties. Networks are usually directed andweighted, such that directionality identifies the borrower and the lender,
and the weight of the link represents the loan amount.

Ref. [450] is hitherto the only work analyzing this network from a multilayer point of view. Authors utilize a unique
database of supervisory reports of Italian banks to the Banca d’Italia, including all bilateral exposures of all Italian banks,
broken down by maturity and by the secured and unsecured nature of the contract. Each layer in the network represents
a different type of exposure, namely: unsecured overnight, unsecured short-term (less than 12 months), unsecured long-
term (more than 12 months), secured short-term and secured long-term. The analysis of these five layers shows a high
heterogeneity between them, with the topology of the overall network largely reflecting the one of the unsecured overnight
layer. This layer is especially important from the policy-making point of view, as it is the focus ofmonetary policy operations
in several jurisdictions. Notably, such layer is characterized by a high persistence of links over time, such that, if two banks
are connected at a given time, they will have a high probability of being connected in the future. This may have important
consequences in the stability of the system, in terms of perturbations contagion.

7.3.3. Organizational networks
A third active field of research in economy is the study of organizational networks, i.e. the study of how different

organizations interact, by exchanging information, money, or other resources, with the aim of collectively produce a good or
a service. While traditionally such interactions had a hierarchical structure, in recent years more complex topologies have
emerged, in which the power of the decisionmaking process is spread amongmany participants [491]. Once again, complex
networks stand for as the most suitable instrument for the analysis of the resulting interaction structures [492,493]. While
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The issues posed by the multiscale modeling of both natural and artificial complex systems call for a generalization of the
‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.

2.1. Definitions and notations

2.1.1. The formal basic definitions
A multilayer networkis a pair M = (G, C) where G = {G↵; ↵ 2 {1, . . . ,M}} is a family of (directed or undirected,

weighted or unweighted) graphs G↵ = (X↵, E↵) (called layers of M) and

C = {E↵� ✓ X↵ ⇥ X�; ↵, � 2 {1, . . . ,M}, ↵ 6= �} (1)

is the set of interconnections between nodes of different layers G↵ and G� with ↵ 6= � . The elements of C are called crossed
layers, and the elements of each E↵ are called intralayer connections of M in contrast with the elements of each E↵� (↵ 6= �)
that are called interlayer connections.

In the remainder, wewill use Greek subscripts and superscripts to denote the layer index. The set of nodes of the layer G↵

will be denoted by X↵ = {x↵
1 , . . . , x

↵
N↵

} and the adjacency matrix of each layer G↵ will be denoted by A[↵] = (a↵
ij ) 2 RN↵⇥N↵ ,

where

a↵
ij =

⇢
1 if (x↵

i , x
↵
j ) 2 E↵,

0 otherwise, (2)

for 1  i, j  N↵ and 1  ↵  M . The interlayer adjacencymatrix corresponding to E↵� is thematrix A[↵,�] = (a↵�
ij ) 2 RN↵⇥N�

given by:

a↵�
ij =

⇢
1 if (x↵

i , x
�
j ) 2 E↵� ,

0 otherwise.
(3)

The projection network of M is the graph proj(M) = (XM, EM) where

XM =

M[

↵=1

X↵, EM =

 
M[

↵=1

E↵

!
[

0

B@
M[

↵,�=1
↵ 6=�

E↵�

1

CA . (4)

We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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The issues posed by the multiscale modeling of both natural and artificial complex systems call for a generalization of the
‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.

2.1. Definitions and notations
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.
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is the set of interconnections between nodes of different layers G↵ and G� with ↵ 6= � . The elements of C are called crossed
layers, and the elements of each E↵ are called intralayer connections of M in contrast with the elements of each E↵� (↵ 6= �)
that are called interlayer connections.
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =
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1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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The issues posed by the multiscale modeling of both natural and artificial complex systems call for a generalization of the
‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.

2.1. Definitions and notations

2.1.1. The formal basic definitions
A multilayer networkis a pair M = (G, C) where G = {G↵; ↵ 2 {1, . . . ,M}} is a family of (directed or undirected,
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C = {E↵� ✓ X↵ ⇥ X�; ↵, � 2 {1, . . . ,M}, ↵ 6= �} (1)

is the set of interconnections between nodes of different layers G↵ and G� with ↵ 6= � . The elements of C are called crossed
layers, and the elements of each E↵ are called intralayer connections of M in contrast with the elements of each E↵� (↵ 6= �)
that are called interlayer connections.

In the remainder, wewill use Greek subscripts and superscripts to denote the layer index. The set of nodes of the layer G↵
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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The issues posed by the multiscale modeling of both natural and artificial complex systems call for a generalization of the
‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.

2.1. Definitions and notations

2.1.1. The formal basic definitions
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is the set of interconnections between nodes of different layers G↵ and G� with ↵ 6= � . The elements of C are called crossed
layers, and the elements of each E↵ are called intralayer connections of M in contrast with the elements of each E↵� (↵ 6= �)
that are called interlayer connections.

In the remainder, wewill use Greek subscripts and superscripts to denote the layer index. The set of nodes of the layer G↵
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
1 if a↵

ij = 1 for some 1  ↵  M
0 otherwise. (5)
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multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
nodes connected by different types of links. The paradigm of multiplex networks is social systems, since these systems can
be seen as a superposition of a multitude of complex social networks, where nodes represent individuals and links capture
a variety of different social relations.

A given multiplex network M, can be associated to several (monolayer) networks providing valuable information about
it. A specific example is the projection network proj(M) = (XM, EM). Its adjacency matrix AM has elements

aij =

⇢
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ij = 1 for some 1  ↵  M
0 otherwise. (5)
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The issues posed by the multiscale modeling of both natural and artificial complex systems call for a generalization of the
‘‘traditional’’ network theory, by developing a solid foundation and the consequent new associated tools to studymultilayer
and multicomponent systems in a comprehensive fashion. A lot of work has been done during the last years to understand
the structure and dynamics of these kind of systems [20–24]. Related notions, such as networks of networks [25,26],
multidimensional networks [20], multilevel networks,multiplex networks, interacting networks, interdependent networks,
and many others have been introduced, and even different mathematical approaches, based on tensor representation
[21,22] or otherwise [23,24], have been proposed. It is the purpose of this section to survey and discuss a general framework
for multilayer networks and review some attempts to extend the notions and models from single layer to multilayer
networks. As we will see, this framework includes the great majority of the different approaches addressed so far in the
literature.
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layers, and the elements of each E↵ are called intralayer connections of M in contrast with the elements of each E↵� (↵ 6= �)
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We will denote the adjacency matrix of proj(M) = (XM, EM) by AM .
Thismathematicalmodel iswell suited to describe phenomena in social systems, aswell asmany other complex systems.

An example is the dissemination of culture in social networks in the Axelrod Model [27], since each social group can be
understood as a layer within amultilayer network. By using this representation we simultaneously take into account:

(i) the links inside the different groups,
(ii) the nature of the links and the relationships between elements that (possibly) belong to different layers,
(iii) the specific nodes belonging to each layer involved.

Amultiplex network [28] is a special type of multilayer network in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are those inwhich a given node is only connected to its counterpart nodes in the rest of layers,
i.e., E↵� = {(x, x); x 2 X} for every ↵, � 2 {1, . . . ,M}, ↵ 6= � . In other words, multiplex networks consist of a fixed set of
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a variety of different social relations.
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A first approach to the concept of multiplex networks could suggest that these new objects are actually (monolayer)
networks with some (modular) structure in the mesoscale. It is clear that if we take a multiplex M, we can associate to it a
(monolayer) network M̃ = (X̃, Ẽ), where X̃ is the disjoint union of all the nodes of G1, . . . ,GM , i.e.
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Note that M̃ is a (monolayer) graph with N ⇥M nodes whose adjacency matrix, called supra-adjacencymatrix of M, can be
written as a block matrix

Ã =

0

BB@

A1 IN · · · IN
IN A2 · · · IN
...

...
. . .

...
IN IN · · · AM

1

CCA 2 RNM⇥NM , (8)

where IN is the N-dimensional identity matrix.
The procedure of assigning a matrix to a multilayer network is often called flattening , unfolding or matricization. It is

important to remark that the behaviors of M and M̃ are related but different, since a single node of M corresponds to
different nodes in M̃. Therefore, the properties and behavior of a multiplex M can be understood as a type of non-linear
quotient of the properties of the corresponding (monolayer) network M̃.

It is important to remark that the concept of multilayer network extends that of other mathematical objects, such as:

1. Multiplex networks.Aswe stated before, amultiplex network [28]M, withM layers is a set of layers {G↵; ↵ 2 {1, . . . ,M}},
where each layer is a (directed or undirected, weighted or unweighted) graph G↵ = (X↵, E↵), with X↵ = {x1, . . . , xN}.
As all layers have the same nodes, this can be thought of as a multilayer network by taking X1 = · · · = XM = X and
E↵� = {(x, x); x 2 X} for every 1  ↵ 6= �  M .

2. Temporal networks [29]. A temporal network (G(t))Tt=1 can be represented as a multilayer network with a set of layers
{G1, . . . ,GT } where Gt = G(t), E↵� = ; if � 6= ↵ + 1, while

E↵,↵+1 = {(x, x); x 2 X↵ \ X↵+1} (9)

(see the schematic illustration of Fig. 1). Notice that here t is an integer, and not a continuous parameter as it will be used
later on in Section 6.1.1.

3. Interacting or interconnected networks [24]. If we consider a family of networks {G1, . . . ,GL} that interact, they can be
modeled as a multilayer network of layers {G1, . . . ,GL} and whose crossed layers E↵� correspond to the interactions
between network G↵ and G� (see Fig. 2).

4. Multidimensional networks [20,30–33]. Formally, an edge-labeled multigraph (multidimensional network) [30] is a triple
G = (V , E,D) where V is a set of nodes, D is a set of labels representing the dimensions, and E is a set of labeled edges,
i.e. it is a set of triples E = {(u, v, d); u, v 2 V , d 2 D}. It is assumed that given a pair of nodes u, v 2 V and a label
d 2 D, there may exist only one edge (u, v, d). Moreover, if the model considered is a directed graph, the edges (u, v, d)
and (v, u, d) are distinct. Thus, given |D| = m, each pair of nodes in G can be connected by at most m possible edges.
When needed, it is possible to consider weights, so that the edges are no longer triplets, but quadruplets (u, v, d, w),
where w is a real number representing the weight of the relation between nodes u, v 2 V and labeled with d 2 D. A
multidimensional networkG = (V , E,D) can bemodeled as amultiplex network (and therefore, as amultilayer network)
by mapping each label to a layer. Specifically, G can be associated to a multilayer network of layers {G1, . . . ,G|D|} where
for every ↵ 2 D, G↵ = (X↵, E↵), X↵ = V ,

E↵ = {(u, v) 2 V ⇥ V ; (u, v, d) 2 E and d = ↵} (10)

and E↵� = {(x, x); x 2 V } for every 1  ↵ 6= �  |D|.
5. Interdependent (or layered) networks [25,34,35]. An interdependent (or layered) network is a collection of different

networks, the layers, whose nodes are interdependent to each other. In practice, nodes from one layer of the network
depend on control nodes in a different layer. In this kind of representation, the dependencies are additional edges
connecting the different layers. This structure, in between the network layers, is often calledmesostructure. A preliminary
study about interdependent networkswas presented in Ref. [34] (there called layerednetworks). Similarly to the previous
case of multidimensional networks, we can consider an interdependent (or layered) network as a multilayer network by
identifying each network with a layer.
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Ã =

0

BB@

A1 IN · · · IN
IN A2 · · · IN
...

...
. . .

...
IN IN · · · AM

1

CCA 2 RNM⇥NM , (8)

where IN is the N-dimensional identity matrix.
The procedure of assigning a matrix to a multilayer network is often called flattening , unfolding or matricization. It is

important to remark that the behaviors of M and M̃ are related but different, since a single node of M corresponds to
different nodes in M̃. Therefore, the properties and behavior of a multiplex M can be understood as a type of non-linear
quotient of the properties of the corresponding (monolayer) network M̃.

It is important to remark that the concept of multilayer network extends that of other mathematical objects, such as:

1. Multiplex networks.Aswe stated before, amultiplex network [28]M, withM layers is a set of layers {G↵; ↵ 2 {1, . . . ,M}},
where each layer is a (directed or undirected, weighted or unweighted) graph G↵ = (X↵, E↵), with X↵ = {x1, . . . , xN}.
As all layers have the same nodes, this can be thought of as a multilayer network by taking X1 = · · · = XM = X and
E↵� = {(x, x); x 2 X} for every 1  ↵ 6= �  M .

2. Temporal networks [29]. A temporal network (G(t))Tt=1 can be represented as a multilayer network with a set of layers
{G1, . . . ,GT } where Gt = G(t), E↵� = ; if � 6= ↵ + 1, while

E↵,↵+1 = {(x, x); x 2 X↵ \ X↵+1} (9)

(see the schematic illustration of Fig. 1). Notice that here t is an integer, and not a continuous parameter as it will be used
later on in Section 6.1.1.

3. Interacting or interconnected networks [24]. If we consider a family of networks {G1, . . . ,GL} that interact, they can be
modeled as a multilayer network of layers {G1, . . . ,GL} and whose crossed layers E↵� correspond to the interactions
between network G↵ and G� (see Fig. 2).

4. Multidimensional networks [20,30–33]. Formally, an edge-labeled multigraph (multidimensional network) [30] is a triple
G = (V , E,D) where V is a set of nodes, D is a set of labels representing the dimensions, and E is a set of labeled edges,
i.e. it is a set of triples E = {(u, v, d); u, v 2 V , d 2 D}. It is assumed that given a pair of nodes u, v 2 V and a label
d 2 D, there may exist only one edge (u, v, d). Moreover, if the model considered is a directed graph, the edges (u, v, d)
and (v, u, d) are distinct. Thus, given |D| = m, each pair of nodes in G can be connected by at most m possible edges.
When needed, it is possible to consider weights, so that the edges are no longer triplets, but quadruplets (u, v, d, w),
where w is a real number representing the weight of the relation between nodes u, v 2 V and labeled with d 2 D. A
multidimensional networkG = (V , E,D) can bemodeled as amultiplex network (and therefore, as amultilayer network)
by mapping each label to a layer. Specifically, G can be associated to a multilayer network of layers {G1, . . . ,G|D|} where
for every ↵ 2 D, G↵ = (X↵, E↵), X↵ = V ,

E↵ = {(u, v) 2 V ⇥ V ; (u, v, d) 2 E and d = ↵} (10)

and E↵� = {(x, x); x 2 V } for every 1  ↵ 6= �  |D|.
5. Interdependent (or layered) networks [25,34,35]. An interdependent (or layered) network is a collection of different

networks, the layers, whose nodes are interdependent to each other. In practice, nodes from one layer of the network
depend on control nodes in a different layer. In this kind of representation, the dependencies are additional edges
connecting the different layers. This structure, in between the network layers, is often calledmesostructure. A preliminary
study about interdependent networkswas presented in Ref. [34] (there called layerednetworks). Similarly to the previous
case of multidimensional networks, we can consider an interdependent (or layered) network as a multilayer network by
identifying each network with a layer.

edges

Physics Reports 544 (2014) 1–122

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The structure and dynamics of multilayer networks

S. Boccaletti a,b,⇤, G. Bianconi c, R. Criadod,e, C.I. del Genio f,g,h,
J. Gómez-Gardeñes i, M. Romanced,e, I. Sendiña-Nadal j,e, Z. Wangk,l,
M. Zaninm,n

a CNR - Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
b The Italian Embassy in Israel, 25 Hamered st., 68125 Tel Aviv, Israel
c School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
d Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
e Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
f Warwick Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
g Centre for Complexity Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
h Warwick Infectious Disease Epidemiology Research (WIDER) Centre, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL,
United Kingdom
i Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
j Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
k Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
l Center for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Center for Nonlinear and Complex Systems (Hong Kong) and Institute
of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
m Innaxis Foundation & Research Institute, José Ortega y Gasset 20, 28006 Madrid, Spain
n Faculdade de Ciências e Tecnologia, Departamento de Engenharia Electrotécnica, Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal

a r t i c l e i n f o

Article history:
Accepted 3 July 2014
Available online 10 July 2014
editor: I. Procaccia

a b s t r a c t

In the past years, network theory has successfully characterized the interaction among
the constituents of a variety of complex systems, ranging from biological to technological,
and social systems. However, up until recently, attention was almost exclusively given to
networks in which all components were treated on equivalent footing, while neglecting all
the extra information about the temporal- or context-related properties of the interactions
under study. Only in the last years, taking advantage of the enhanced resolution in real
data sets, network scientists have directed their interest to the multiplex character of
real-world systems, and explicitly considered the time-varying and multilayer nature
of networks. We offer here a comprehensive review on both structural and dynamical
organization of graphs made of diverse relationships (layers) between its constituents,
and cover several relevant issues, from a full redefinition of the basic structural measures,
to understanding how the multilayer nature of the network affects processes and
dynamics.
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Fig. 1. Illustration of the idea of characterizing different types of network structures by finding ‘natural’ injective maps from one
set of network structures to another. We do not define the notion of ‘natural’ in a rigorous way, but we say that two network
structures are related when there is a natural bijective map between them. In such a scenario, one can think of the two structures
as two different ways of representing the same object. For example, as we illustrate in the figure, there is a natural bijective
mapping between edge-coloured multigraphs and sequences of graphs that contain the same nodes, so one can construe these
structures as equivalent (i.e. different representations of the same mathematical object). Further, the subset of multilayer networks
that we label as ‘Edge-coloured multigraphs mapped to multilayer networks’ is the image of the injective map from the set of
edge-coloured multigraphs to the set of multilayer networks. Each of the two solid lines indicates an explicit mapping, and the
dashed line indicates a mapping that is implied by transitivity. It might be possible to find both a natural injective mapping (which
is not surjective) from some structure A to some other structure B and another such mapping from B to A. (For any given structure,
there is no upper bound to the number of layers, aspects, or other features that we can consider.) In other words, to argue that one
network structure is a ‘special case’ of another, one would need to find a natural, injective, non-surjective map in one direction
and prove that no such map exists in the other direction. It is not our aim to make such arguments; instead, we indicate mappings
between different structures to illustrate different ways of representing the same object.

be the type of an edge and another aspect might be the time at which an edge is present. The above use
of the word ‘dimension’ amounts to a standard English meaning of the word to mean aspect or feature,
but the standard use of the monicker ‘dimension’ as jargon in mathematics and physics compels us to
use different terminology. Additionally, in the social-networks literature, one might discuss different
‘dimensions’ of interactions between people (friendship, family etc.), so that a dimension would then
correspond to a layer in a multilayer network. We wish to avoid this terminology clash as well.

We will now give a precise definition of a multilayer network based on our above description.8 A
multilayer network has a set of nodes V just like a normal network (i.e. a graph). In addition, we need to
have layers. However, because we want to be able to include multiple aspects in a multilayer network,
we cannot restrict ourselves to having a single set of layers. For example, in a network in which the first
aspect is interaction type and the second one is time, we need one set of layers for interaction types and
a second set of layers for time (e.g. for time stamps). To avoid confusion, we use the term ‘elementary
layer’ (see Fig. 2) for an element of one of these sets and the term ‘layer’ to refer to a combination of ele-
mentary layers from all aspects. In the previous example, an interaction type and a time stamp are both
examples of an elementary layer, and a combination of an interaction type and a time stamp constitutes
a layer. A multilayer network can have any number d of aspects, and we need to define a sequence L=
{La}da=1 of sets of elementary layers such that there is one set of elementary layers9 La for each aspect a.

Using the sequence of sets of elementary layers, we can construct a set of layers in a multilayer
network by assembling a set of all of the combinations of elementary layers using a Cartesian product

8 See Refs. [138,139] for software for the investigation and visualization of multilayer networks.
9 Note that a set of elementary layers need not be finite, and it could even be continuous. We will discuss this issue briefly in

Section 2.7, but we otherwise assume in this article that all of the elementary-layer sets are finite. We also assume in this article
that the number of aspects is finite.
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(a) (b)

Fig. 2. (a) An example of the most general type of multilayer network, M = (VM ,EM ,V ,L), that we consider in
this article. The network M has a total of four nodes, so V = {1, 2, 3, 4}, and two aspects, which have corresponding
elementary-layer sets L1 = {A,B} and L2 = {X ,Y }. There are thus a total of four different layers: (A,X ), (A, Y), (B,X )
and (B,Y). Each layer contains some subset of the node set V ; for this example, the set of node-layer tuples is VM =
{(1,A,X ), (2,A,X ), (3,A,X ), (2,A,Y), (3,A,Y), (1,B,X ), (3,B,X ), (4,B,X ), (1,B,Y)} ⊆ V × L1 × L2. The nodes can be con-
nected to each other in a pairwise manner both within the layers and across the layers. We show the edges that remain inside
of a layer (i.e. intra-layer edges) as solid lines and the edges that cross layers (i.e. inter-layer edges) as dotted lines. (b) The
underlying graph GM = (VM ,EM ) of the same multilayer network. We again show intra-layer edges as solid lines and inter-layer
edges as dashed lines. The adjacency matrix of this graph (or ‘supra-graph’) is the multilayer network’s supra-adjacency matrix.

L1 × · · · × Ld . We want to allow nodes to be absent in some of the layers. That is, for each choice of a
node and layer, we need to indicate whether the node is present in that layer. To do so, we first construct
a set V × L1 × · · · × Ld of all of these combinations and then define a subset VM ⊆ V × L1 × · · · × Ld
that contains only the node-layer combinations in which a node is present in the corresponding layer.10
We will often use the term node-layer tuple (or simply node-layer) to indicate a node that exists on a
specific layer. Thus, the node-layer (u,α1, . . . ,αd) represents node u on layer (α1, . . . ,αd).

In a multilayer network, we need to define connections between pairs of node-layer tuples. As with
monoplex networks, we will use the term adjacency to describe a direct connection via an edge between
a pair of node-layers and the term incidence to describe the connection between a node-layer and an
edge. Two edges that are incident to the same node-layer are also ‘incident’ to each other. We want to
allow all of the possible types of edges that can occur between any pair of node-layers—including ones
in which a node is adjacent to a copy of itself in some other layer as well as ones in which a node is
adjacent to some other node from another layer. In normal networks (i.e. graphs), the adjacencies are
defined by an edge set E⊆ V × V , in which the first element in each edge is the starting node and the
second element is the ending node. In multilayer networks, we also need to specify the starting and
ending layers for each edge. We thus define an edge set EM of a multilayer network as a set of pairs of
possible combinations of nodes and elementary layers. That is, EM ⊆ VM × VM .

Using the components that we set up above, we define a multilayer network as a quadruplet M =
(VM ,EM ,V ,L). See Fig. 2(a) for an illustrative example. Note that if the number of aspects is zero (i.e.
if d = 0), then the multilayer networkM reduces to a monoplex (i.e. single-layer) network. In that case,
VM = V , so the set VM becomes redundant. (By convention, the product term in the set V × L1 × · · · ×
Ld does not exist if d = 0.)

10 It is also convenient to require that there do not exist nodes that are not present in any of the layers. Therefore, each node
appears in at least one layer, so {u|(u,α1, . . . ,αd ) ∈ VM } = V .)
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(a) (b)

Fig. 3. (a) Visualization of the Zachary Karate Club Club (ZKCC) network as a multilayer network. Nodes (i.e. elements of V ) in
the network are the four network scientists who have held the coveted karate trophy for a period of time and have been awarded
the associated membership in the ZKCC [142]. The current members of the ZKCC are Cris Moore (CM), Mason A. Porter (MAP),
Yong-Yeol Ahn (YYA) and Marián Boguñá (MB). In the figure, Aaron Clauset (AC) is standing in for CM, as the former awarded
the karate trophy to MAP at NetSci’13 on behalf of the latter (who did not attend any of the conferences in the figure). The ZKCC
network has two aspects: the first one is the type of relationship between the scientists (talked to each other, went to a talk by the
other) and the second one represents a conference in which the trophy was awarded (and thereby passed from one recipient to the
next). We assume for simplicity that all of the edges are undirected, even though the relationship of attending a talk obviously need
not be a reciprocal one. Each layer includes one elementary layer from each of the two aspects. We represent intra-layer edges
using solid curves and inter-layer edges using dotted curves. All of the inter-layer edges are coupling edges because nodes are
adjacent only to themselves (and not to other nodes) in other layers, and the inter-layer edges are therefore diagonal. The coupling
edges in the first aspect are categorical (because such edges exist between corresponding nodes in all possible pairs of layers),
and the coupling edges in the second aspect are ordinal (see Section 2.7) because there exist such edges only in conferences that
are contiguous to each other in time. Additionally, there is a coupling edge between a node and its counterpart in two different
layers only when the layers differ from each other in exactly one aspect. [For example, MAP in layer (‘ECCS’13’, ‘Talked to each
other’) is not adjacent to MAP in layer (‘Workshop in Oxford’, ‘Went to a talk by the other’).] That is, the ZKCC network does
not include inter-aspect coupling (see Section 2.2.1). Additionally, the ZKCC network is not node-aligned because some of the
nodes are missing from some of the layers. Finally, the ZKCC network is an example of a multiplex network (see Section 2.5).
(b) Visualization of ZKCC network as an edge-coloured multigraph (see Section 2.5).

and the number of layers by b= |L|. Note that categorically-coupled multilayer networks are a subset of
layer-coupled networks, which are in turn a subset of diagonal networks. We summarize the constraints
that we have just discussed in the Glossary (see Appendix), and we illustrate these constraints with an
example multilayer network in Fig. 3(a).

2.2 Tensor representations

It is often convenient to represent ordinary graphs (i.e. monoplex networks) using adjacency
matrices. For a node-aligned multilayer network, we represent the analogous structure using a
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Other alternative models focus on the study of networks with multiple kinds of interactions in the broadest as possible
sense. For example, interdependent networks were used to study the interdependence of several real world infrastructure
networks in Refs. [25,35], where the Authors also explore several properties of these structures such as cascading failures
and percolation. Related to this concept, in Ref. [35] the Authors report the presence of a critical threshold in percolation
processes, creating an analogy between interdependent networks and ideal gases. The main advantage of interdependent
networks is their ability of mapping a node in one relation with many different nodes in another relation. Thus, the
mesostructure can connect a single node in a network N1 to several different nodes in a network N2. This is not possible
in other models where there is no explicitly defined mesostructure, and therefore a node is a single, not divisible entity.

Multilevel networks [36] lie in between the multidimensional and the interdependent networks, as they extend both
the classic complex network model and the hypergraph model [37]. Multilevel networks are completely equivalent
(isomorphic) to multidimensional networks by considering a dimension d in conjunction with the equivalent slice Sd. The
set D corresponding to dimension d is the collection of edges labeled with the label d, i.e. D = {(u, v, x); x = d}, while
Sd is the collection of nodes and edges of relation d, i.e. all the u and v that are present in at least one edge labeled with
d. In order to perform more advanced studies such as the shortest path detection, in Ref. [36] Authors introduced also a
mesostructure called auxiliary graph. Every vertex of the multilevel network M is represented by a vertex in the auxiliary
graph and, if a vertex in M belongs to two or more slice graphs in M, then it is duplicated as many times as the number
of slice graphs it belongs to. Every edge of E is an edge in the auxiliary graph and there is one more (weighted) edge for
each vertex duplication between the duplicated vertex and the original one. This operation breaks the isomorphism with
multidimensional networks and brings this representation very close to a layered network [30]. However, these twomodels
are not completely equivalent, since in the multilevel network the one-to-one correspondence of nodes in different slices
is strict, while this condition does not hold for layered networks. In Ref. [36], the Authors also define some extensions of
classical network measures for multilevel networks, such as the slice clustering coefficient and the efficiency, as well as a
collection of network random generators for multilevel structures.

In Ref. [68] the Authors introduce the concept of multiplex networks by extending the popular modularity function for
community detection, and by adapting its implicit null model to fit a layered network. The main idea is to represent each
layer with a slice. Each slice has an adjacency matrix describing connections between nodes belonging to the previously
considered slice. This concept also includes a mesostructure, called interslice couplings which connects a node of a specific
slice S↵ to its copy in another slice S� . The mathematical formulation of multiplex networks has been recently developed
through many works [23,28,45,47–57,59,60]. For instance, in Ref. [23] a comprehensive formalism to deal with multiplex
systems is proposed, and a number of metrics to characterize multiplex systems with respect to node degree, edge overlap,
node participation to different layers, clustering coefficient, reachability and eigenvector centrality is provided.

Other recent extensions includemultivariate networks [69],multinetworks [70,71],multislice networks [68,72–74],mul-
titype networks [75–77],multilayer networks [21,22,78,79], interacting networks [24,80,81], andnetworks of networks [46],
most of which can be considered particular cases of the definition of multilayer networks given in Section 2.1.1. Finally, it is
important to remark that the terminology referring to networks with multiple different relations has not yet reached a con-
sensus. In fact, different scientists from various fields still use similar terminologies to refer to different models, or distinct
names for the samemodel. It is thus clear that the introduction of a sharpmathematical model that fits these new structures
is crucial to properly analyze the dynamics that takes place in these complex systems which even nowadays are far from
being completely understood.

The notation proposed in Section 2.1.1 is just one of the possible ways of dealing with multilayer networks, and indeed
there have been other recent attempts to define alternative frameworks. In particular, the tensor formalism proposed in
Refs. [21,22], which we will extensively review in Section 2.3, seems promising, since it allows the synthetic and compact
expression of multiplex metrics. Nevertheless, we believe that the notation we propose here is somehow more immediate
to understand and easier to use for the study of real-world systems.

In the following, we describe the extension to the context of multilayer networks of the parameters that are traditionally
used to characterize the structural properties of a monolayer graph.

2.2. Characterizing the structure of multilayer networks

2.2.1. Centrality and ranking of nodes
The problem of identifying the nodes that play a central structural role is one of themain topics in the traditional analysis

of complex networks. Inmonolayer networks, there aremanywell-knownparameters thatmeasure the structural relevance
of each node, including the node degree, the closeness, the betweenness, eigenvector-like centralities and PageRank
centrality. In the following, we discuss the extension of these measures to multilayer networks.

One of the main centrality measures is the degree of each node: the more links a node has, the more relevant it is. The
degree of a node i 2 X of a multiplex network M = (G, C) is the vector [20,23]

ki = (k[1]
i , . . . , k[M]

i ), (13)

where k[↵]

i is the degree of the node i in the layer ↵, i.e. k[↵]

i =
P

j a
[↵]

ij . This vector-type node degree is the natural extension
of the established definition of the node degree in a monolayer network.

Degree vector
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One of the main goals of any centrality measure is ranking the nodes to produce an ordered list of the vertices according
to their relevance in the structure. However, since the node degree in a multiplex network is a vector, there is not a clear
ordering in RM that could produce such a ranking. In fact, one can define many complete orders in RM , and therefore we
should clarify which of these are relevant. Once one has computed the vector-type degree of the nodes, one can aggregate
this information and define the overlapping degree [23] of the node i 2 X , as

oi =

MX

↵=1

k[↵]

i , (14)

i.e. oi = kkik1. In fact, many other aggregation measures f (ki) could be alternatively used to compute the degree centrality,
such as a convex combination of k[1]

i , . . . , k[M]

i , or any norm of ki.
Other centrality measures, such as closeness and betweenness centrality, are based on the metric structure of the

network. Thesemeasures can be easily extended tomultilayer networks, once themetric and geodesic structure are defined.
In Section 2.2.3, the reader will find a complete discussion of the metric structures in multilayer networks, which allow
straightforward extensions of this kind of centrality measures.

A different approach to measure centrality employs the spectral properties of the adjacency matrix. In particular, the
eigenvector centrality considers not only the number of links of each node but also the quality of such connections [82].
There are several different ways to extend this idea to multilayer networks, as discussed in Ref. [28], or in Ref. [83]
where eigenvector centrality is used to optimize the outcome of interacting competing networks. In the former reference,
several definitions of eigenvector-like centrality measures for multiplex networks are presented, along with studies of their
existence and uniqueness.

The simplest way to calculate eigenvector-like centralities inmultiplex networks is to consider the eigenvector centrality
c↵ = (c[↵]

1 , . . . , c[↵]

N ) in each layer 1  ↵  M separately.With this approach, for every node i 2 X the eigenvector centrality
ci is another vector

ci = (c[1]
i , . . . , c[M]

i ) 2 RM , (15)

where each coordinate is the centrality in the corresponding layer. Once all the eigenvector centralities have been computed,
the independent layer eigenvector-like centrality [28] of M is the matrix

C =
�

cT1 cT2 . . . cTM
�

2 RN⇥M . (16)

Notice that C is column stochastic, since all components of c↵ are semipositive definite and kc↵k1 = 1 for every 1  ↵  M ,
and the centrality ci of each node i 2 X is the ith row of C . As for the degree-type indicators, a numeric centrality measure of
each node can be obtained by using an aggregation measure f (ci) such as the sum, the maximum, or the `p-norm. The main
limitation of this parameter is that it does not fully consider the multilevel interactions between layers and its influence in
the centrality of each node.

If one now bears in mind that the centrality of a node must be proportional to the centrality of its neighbors (that are
distributed among all the layers), and if one considers that all the layers have the same importance, one has that

8x↵
i , x

↵
j 2 X↵, c(x↵

i ) / c(x↵
j ) if (x↵

j ! x↵
i ) 2 G↵, ↵ 2 {1, . . . ,M}, (17)

so the uniform eigenvector-like centrality is defined [28] as the positive and normalized eigenvectorec (if it exists) of thematrix
eA given by

eA =

MX

↵=1

(A[↵])T, (18)

where (A[↵])T is the transpose of the adjacency matrix of layer ↵. This situation happens, for instance, in social networks,
where different people may have different relationships with other people, while one is generically interested to measure
the centrality of the network of acquaintances.

A more complex approach is to consider different degrees of importance (or influence) in different layers of the network,
and to include this information in the definition of a matrix that defines the mutual influence between the layers. Thus, to
calculate the importance of a node within a specific layer, one must take into account also all the other layers, as some of
themmay be highly relevant for the calculation. Consider, for instance, the case of a boss living in the same block of flats as
one of his employees: the relationship between the two fellows within the condominium layer formed by all the neighbors
has a totally different nature from that occurring inside the office layer, but the role of the boss (i.e. his centrality) in this
case can be even bigger than if he was the only person from the office living in that block of flats. In other words, one needs
to consider the situation where the influence amongst layers is heterogeneous.

To this purpose, one can introduce an influence matrix W = (w↵�) 2 RM⇥M , defined as a non-negative matrix W � 0
such that w↵� measures the influence on the layer G↵ given by the layer G� . Once G and W = (w↵�) have been fixed, the

Overlapping degree

CO10CH03_Moreno ARI 20 October 2018 8:28

Multilayer networks encode two major classes of systems (8): multiplex networks and a network
of networks. Multiplex networks are networks in which the same set of nodes is represented in
every layer, although the interaction between nodes might be different in each one. As an example,
two nodes might be connected in one layer and might not in other. This is the case of online social
systems, in which a given user might have a Twitter account (layer 1) and a Facebook profile (layer
2). The set of followers/friends does not in general coincide for both layers, thus leading to two
different intralayer adjacency matrices. On the contrary, a network of networks is instead formed
by networks that are interlaced to each other but formed by different types of nodes. Although
these two are the most common kinds of multilayer networks, Kivelä et al. (5) present several
other types and denominations of multilayer networks.

When building multilayer networks it is often not completely clear how to define each layer,
the interactions among them, or even how many of them are necessary. De Domenico et al. (9)
tackle the problem of reducibility, i.e., defining the number of layers a multilayer network needs
to have to accurately represent the structure of the system. Using the Von Neumann entropy
on a multilayer network, it is possible to determine whether the multilayer representation is
distinguishable from the aggregated network. This way, De Domenico et al. propose that if the
aggregation of two layers does not result in a decrease of the relative entropy with respect to
the multiplex where they are separated, they should be kept aggregated. Likewise, Menichetti
et al. (10) propose a measure of the amount of additional information that can be extracted from
multiplex networks over the one contained in the individual layers separately based on the entropy
of multiplex ensembles. Furthermore, Kleineberg et al. (11) show that multiplex networks are
not just random combinations of single network layers but rather they posses significant hidden
geometric correlations. Finally, Cozzo et al. (12) show that as a function of the coupling between
layers, different multiplexity regimes can be identified from the spectral properties of the graph.

The extension of the tools already developed for single-layer networks to the multilayer frame-
work is sometimes straightforward (13). For example, we can define the degree of node i in layer
α as kαi =

∑
j aαij . Consequently, its degree in the multilayer network is no longer a scalar but

the vector ki = {k1
i , . . . , kL

i }, which results in a total degree or degree overlap of oi =
∑

α kαi . It is
also possible to create new measures like the edge overlap, oij =

∑
α aαij , which accounts for the

number of layers in which the same link exists. Besides, as nodes are now characterized by vectors
instead of scalars, we need to develop new tools to simplify their description. For instance, we can
quantify the distribution of the degree of a node among the various layers using the entropy of
the multiplex degree,

Hi = −
L∑

α=1

kαi
oi

ln
(

kαi
oi

)
,

or the participation coefficient (14).
There are other measures similar to the edge overlap that only work under the multilayer

framework; for instance, there is the interdependence (14). The interdependence of node i is
defined as λi =

∑
i "= j

ψij
σij

, where σij is the total number of shortest paths between nodes i and j ,
and ψij is the number of shortest paths between node i and node j that makes use of links in two
or more layers. Thus, the interdependence measures how dependent a node is on the multiplex
structure in terms of reachability. Equivalently, it is possible to extend this definition from nodes
to layers to account for the importance of a given layer in the whole system (15).

Cozzo et al. (16) extended the notion of triadic relations, the transitive relationship mentioned
previously, to multiplex networks. They distinguish five different triadic relations: one where the
three links are in the same layer, three where two links are in one layer and the third is in a different
layer, and finally one where the three links are in three different layers.
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One of the main goals of any centrality measure is ranking the nodes to produce an ordered list of the vertices according
to their relevance in the structure. However, since the node degree in a multiplex network is a vector, there is not a clear
ordering in RM that could produce such a ranking. In fact, one can define many complete orders in RM , and therefore we
should clarify which of these are relevant. Once one has computed the vector-type degree of the nodes, one can aggregate
this information and define the overlapping degree [23] of the node i 2 X , as

oi =

MX

↵=1

k[↵]

i , (14)

i.e. oi = kkik1. In fact, many other aggregation measures f (ki) could be alternatively used to compute the degree centrality,
such as a convex combination of k[1]

i , . . . , k[M]

i , or any norm of ki.
Other centrality measures, such as closeness and betweenness centrality, are based on the metric structure of the

network. Thesemeasures can be easily extended tomultilayer networks, once themetric and geodesic structure are defined.
In Section 2.2.3, the reader will find a complete discussion of the metric structures in multilayer networks, which allow
straightforward extensions of this kind of centrality measures.

A different approach to measure centrality employs the spectral properties of the adjacency matrix. In particular, the
eigenvector centrality considers not only the number of links of each node but also the quality of such connections [82].
There are several different ways to extend this idea to multilayer networks, as discussed in Ref. [28], or in Ref. [83]
where eigenvector centrality is used to optimize the outcome of interacting competing networks. In the former reference,
several definitions of eigenvector-like centrality measures for multiplex networks are presented, along with studies of their
existence and uniqueness.

The simplest way to calculate eigenvector-like centralities inmultiplex networks is to consider the eigenvector centrality
c↵ = (c[↵]

1 , . . . , c[↵]

N ) in each layer 1  ↵  M separately.With this approach, for every node i 2 X the eigenvector centrality
ci is another vector

ci = (c[1]
i , . . . , c[M]

i ) 2 RM , (15)

where each coordinate is the centrality in the corresponding layer. Once all the eigenvector centralities have been computed,
the independent layer eigenvector-like centrality [28] of M is the matrix

C =
�

cT1 cT2 . . . cTM
�

2 RN⇥M . (16)

Notice that C is column stochastic, since all components of c↵ are semipositive definite and kc↵k1 = 1 for every 1  ↵  M ,
and the centrality ci of each node i 2 X is the ith row of C . As for the degree-type indicators, a numeric centrality measure of
each node can be obtained by using an aggregation measure f (ci) such as the sum, the maximum, or the `p-norm. The main
limitation of this parameter is that it does not fully consider the multilevel interactions between layers and its influence in
the centrality of each node.

If one now bears in mind that the centrality of a node must be proportional to the centrality of its neighbors (that are
distributed among all the layers), and if one considers that all the layers have the same importance, one has that
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so the uniform eigenvector-like centrality is defined [28] as the positive and normalized eigenvectorec (if it exists) of thematrix
eA given by

eA =

MX

↵=1

(A[↵])T, (18)

where (A[↵])T is the transpose of the adjacency matrix of layer ↵. This situation happens, for instance, in social networks,
where different people may have different relationships with other people, while one is generically interested to measure
the centrality of the network of acquaintances.

A more complex approach is to consider different degrees of importance (or influence) in different layers of the network,
and to include this information in the definition of a matrix that defines the mutual influence between the layers. Thus, to
calculate the importance of a node within a specific layer, one must take into account also all the other layers, as some of
themmay be highly relevant for the calculation. Consider, for instance, the case of a boss living in the same block of flats as
one of his employees: the relationship between the two fellows within the condominium layer formed by all the neighbors
has a totally different nature from that occurring inside the office layer, but the role of the boss (i.e. his centrality) in this
case can be even bigger than if he was the only person from the office living in that block of flats. In other words, one needs
to consider the situation where the influence amongst layers is heterogeneous.

To this purpose, one can introduce an influence matrix W = (w↵�) 2 RM⇥M , defined as a non-negative matrix W � 0
such that w↵� measures the influence on the layer G↵ given by the layer G� . Once G and W = (w↵�) have been fixed, the
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One of the main goals of any centrality measure is ranking the nodes to produce an ordered list of the vertices according
to their relevance in the structure. However, since the node degree in a multiplex network is a vector, there is not a clear
ordering in RM that could produce such a ranking. In fact, one can define many complete orders in RM , and therefore we
should clarify which of these are relevant. Once one has computed the vector-type degree of the nodes, one can aggregate
this information and define the overlapping degree [23] of the node i 2 X , as

oi =

MX

↵=1

k[↵]

i , (14)

i.e. oi = kkik1. In fact, many other aggregation measures f (ki) could be alternatively used to compute the degree centrality,
such as a convex combination of k[1]

i , . . . , k[M]

i , or any norm of ki.
Other centrality measures, such as closeness and betweenness centrality, are based on the metric structure of the

network. Thesemeasures can be easily extended tomultilayer networks, once themetric and geodesic structure are defined.
In Section 2.2.3, the reader will find a complete discussion of the metric structures in multilayer networks, which allow
straightforward extensions of this kind of centrality measures.
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eigenvector centrality considers not only the number of links of each node but also the quality of such connections [82].
There are several different ways to extend this idea to multilayer networks, as discussed in Ref. [28], or in Ref. [83]
where eigenvector centrality is used to optimize the outcome of interacting competing networks. In the former reference,
several definitions of eigenvector-like centrality measures for multiplex networks are presented, along with studies of their
existence and uniqueness.

The simplest way to calculate eigenvector-like centralities inmultiplex networks is to consider the eigenvector centrality
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limitation of this parameter is that it does not fully consider the multilevel interactions between layers and its influence in
the centrality of each node.

If one now bears in mind that the centrality of a node must be proportional to the centrality of its neighbors (that are
distributed among all the layers), and if one considers that all the layers have the same importance, one has that

8x↵
i , x

↵
j 2 X↵, c(x↵

i ) / c(x↵
j ) if (x↵

j ! x↵
i ) 2 G↵, ↵ 2 {1, . . . ,M}, (17)

so the uniform eigenvector-like centrality is defined [28] as the positive and normalized eigenvectorec (if it exists) of thematrix
eA given by

eA =

MX

↵=1

(A[↵])T, (18)
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where different people may have different relationships with other people, while one is generically interested to measure
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such that w↵� measures the influence on the layer G↵ given by the layer G� . Once G and W = (w↵�) have been fixed, the
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local heterogeneous eigenvector-like centrality of G on each layer G↵ is defined [28] as a positive and normalized eigenvector
c?
↵ 2 RN (if it exists) of the matrix

A?
↵ =

MX

�=1

w↵�(A[�])T. (19)

So, the local heterogeneous eigenvector-like centralitymatrix can be defined as

C?
=

�
c?
1 c?

2 . . . c?
M

�
2 RN⇥M . (20)

A similar approach was introduced in Ref. [23], but using a matrix

A?
↵ =

MX

�=1

b�(A[�])T, (21)

where b� � 0 and
P

� b� = 1.
Another important issue is that, in general, the centrality of a node x↵

i within a specific layer↵ may depend not only on the
neighbors that are linked to x↵

i within that layer, but also on all other neighbors of x↵
i that belong to the other layers. Consider

the case of scientific citations in different areas of knowledge. For example, there could be two scientistsworking in different
subject areas (a chemist and a physicist) with one of them awarded theNobel Prize: the importance of the other scientistwill
increase even though the Nobel prize laureate had few citations within the area of the other researcher. This argument leads
to the introduction of another concept of centrality [28]. Given amultiplex network M and an influencematrixW = (w↵�),
the global heterogeneous eigenvector-like centrality of M is defined as a positive and normalized eigenvector c⌦ 2 RNM (if it
exists) of the matrix

A⌦
=

0

BBB@

w11(A[1])T w12(A[2])T · · · w1M(A[M])T

w21(A[1])T w22(A[2])T · · · w2M(A[M])T

...
...

. . .
...

wL1(A[1])T wL2(A[2])T · · · wMM(A[M])T

1

CCCA
2 R(NM)⇥(NM). (22)

Note that A⌦ is the Khatri–Rao product of the matrices

W =

0

B@
w11 · · · w1M
...

. . .
...

wM1 · · · wMM

1

CA and
�

(A[1])T (A[2])T · · · (A[M])T
�
. (23)

In analogy with what done before, one can introduce the notation

c⌦
=

0

BBB@

c⌦

1
c⌦

2
...

c⌦

M

1

CCCA
, (24)

where c⌦

1 , . . . , c⌦

M 2 RN . Then, the global heterogeneous eigenvector-like centrality matrix of M is defined as the matrix given
by

C⌦
=

�
c⌦

1 c⌦

2 . . . c⌦

M
�

2 RN⇥M . (25)

Note that, in general C⌦ is neither column stochastic nor row stochastic, but the sum of all the entries of C⌦ is 1.
Other spectral centrality measures include parameters based on the stationary distribution of random walkers with

additional random jumps, such as the PageRank centrality [84]. The extension of these measures and the analysis of random
walkers in multiplex networks will be discussed in Section 5.

2.2.2. Clustering
The graph clustering coefficient introduced byWatts and Strogatz in Ref. [85] can be extended to multilayer networks in

many ways. This coefficient quantifies the tendency of nodes to form triangles, following the popular saying ‘‘the friend of
your friend is my friend’’.

Recall that given a network G = (X, E) the clustering coefficient of a given node i is defined as

cG(i) =
# of links between the neighbors of i

largest possible # of links between the neighbors of i
. (26)

local heterogeneous eigenvector-like centrality 

S. Boccaletti et al. / Physics Reports 544 (2014) 1–122 11

One of the main goals of any centrality measure is ranking the nodes to produce an ordered list of the vertices according
to their relevance in the structure. However, since the node degree in a multiplex network is a vector, there is not a clear
ordering in RM that could produce such a ranking. In fact, one can define many complete orders in RM , and therefore we
should clarify which of these are relevant. Once one has computed the vector-type degree of the nodes, one can aggregate
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In Section 2.2.3, the reader will find a complete discussion of the metric structures in multilayer networks, which allow
straightforward extensions of this kind of centrality measures.
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There are several different ways to extend this idea to multilayer networks, as discussed in Ref. [28], or in Ref. [83]
where eigenvector centrality is used to optimize the outcome of interacting competing networks. In the former reference,
several definitions of eigenvector-like centrality measures for multiplex networks are presented, along with studies of their
existence and uniqueness.

The simplest way to calculate eigenvector-like centralities inmultiplex networks is to consider the eigenvector centrality
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ci is another vector
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where each coordinate is the centrality in the corresponding layer. Once all the eigenvector centralities have been computed,
the independent layer eigenvector-like centrality [28] of M is the matrix

C =
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cT1 cT2 . . . cTM
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2 RN⇥M . (16)

Notice that C is column stochastic, since all components of c↵ are semipositive definite and kc↵k1 = 1 for every 1  ↵  M ,
and the centrality ci of each node i 2 X is the ith row of C . As for the degree-type indicators, a numeric centrality measure of
each node can be obtained by using an aggregation measure f (ci) such as the sum, the maximum, or the `p-norm. The main
limitation of this parameter is that it does not fully consider the multilevel interactions between layers and its influence in
the centrality of each node.

If one now bears in mind that the centrality of a node must be proportional to the centrality of its neighbors (that are
distributed among all the layers), and if one considers that all the layers have the same importance, one has that
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so the uniform eigenvector-like centrality is defined [28] as the positive and normalized eigenvectorec (if it exists) of thematrix
eA given by

eA =

MX
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(A[↵])T, (18)

where (A[↵])T is the transpose of the adjacency matrix of layer ↵. This situation happens, for instance, in social networks,
where different people may have different relationships with other people, while one is generically interested to measure
the centrality of the network of acquaintances.

A more complex approach is to consider different degrees of importance (or influence) in different layers of the network,
and to include this information in the definition of a matrix that defines the mutual influence between the layers. Thus, to
calculate the importance of a node within a specific layer, one must take into account also all the other layers, as some of
themmay be highly relevant for the calculation. Consider, for instance, the case of a boss living in the same block of flats as
one of his employees: the relationship between the two fellows within the condominium layer formed by all the neighbors
has a totally different nature from that occurring inside the office layer, but the role of the boss (i.e. his centrality) in this
case can be even bigger than if he was the only person from the office living in that block of flats. In other words, one needs
to consider the situation where the influence amongst layers is heterogeneous.

To this purpose, one can introduce an influence matrix W = (w↵�) 2 RM⇥M , defined as a non-negative matrix W � 0
such that w↵� measures the influence on the layer G↵ given by the layer G� . Once G and W = (w↵�) have been fixed, the
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If we think of three people i, j and kwithmutual relations between i and j aswell as between i and k, the clustering coefficient
of i represents the likelihood that j and k are also related to each other. The global clustering coefficient of G is further
defined as the average of the clustering coefficients of all nodes. Obviously, the local clustering coefficient is a measure
of transitivity [86], and it can be interpreted as the density of the local node’s neighborhood.

Notice that the global clustering coefficient is sometimes defined differently, with an expression that relates it directly
to the global features of a network. This alternative definition is not equivalent to the previous one, and it is commonly used
in the social sciences [87]. Its expression, sometimes called network transitivity [14], is

T =
# of triangles in the network
# of triads in the network

. (27)

In order to extend the concept of clustering to the context of multilayer networks, it is necessary to consider not only
the intralayer links, but also the interlayer links. In Ref. [36], the Authors establish some relations between the clustering
coefficient of a multilevel network, the clustering coefficient of its layers and the clustering coefficient of its projection
network. This generalization is obtained straightforwardly by identifying each slice Sq of a multilevel network M with a
layer G↵ of the corresponding multiplex network M = (G, C). Before giving a definition of the clustering coefficient of a
node i 2 X within a multilevel network M, we need to introduce some notation.

For every node i 2 X let N (i) be the set of all neighbors of i in the projection network proj(M). For every ↵ 2 {1, . . . ,M}

let N↵(i) = N (i) \ X↵ and S↵(i) be the subgraph of the layer G↵ induced by N↵(i), i.e. S↵(i) = (N↵(i), E↵(i)), where

E↵(i) =
�
(k, j) 2 E↵; k, j 2 N↵(i)

 
. (28)

Similarly, we will define S(i) as the subgraph of the projection network proj(M) induced by N (i). In addition, the complete
graph generated by N↵(i) will be denoted by KN↵(i), and the number of links in KN↵(i) by |E↵(i)|. With this notation we can
define the clustering coefficient of a given node i in M as

CM(i) =

2
MP

↵=1
|E↵(i)|

MP
↵=1

|N↵(i)|(|N↵(i)| � 1)
. (29)

Then, the clustering coefficient of M can be defined as the average of all CM(i).
Once again, the clustering coefficientmay be defined in several differentways. For instance, wemay consider the average

of the clustering coefficients of each layer G↵ . However, it is natural to opt for a definition that considers the possibility that
a given node i has two neighbors k and j with (i, k) 2 E↵ , (i, j) 2 E� with ↵ 6= � , and (j, k) 2 E� with � 6= ↵, � . This is
a situation occurring in social networks: one person i may know j from the aerobic class and k from a reading club, while j
and k know each other from the supermarket. Averaging the clustering coefficients of the layers does not help in describing
such situations, and an approach based on the projection network seems more relevant, as evidenced by the following
example: consider the multiplex network M with layers {G1,G2,G3} and X = {x1, x2, x3, x4} (Fig. 4); it is easy to check that
cproj(M)(xi) = 1 for all xi 2 X but cG↵ (xi) = 0 for all xi and↵. In order to establish a relation between the clustering coefficients
of the nodes in themultiplex network, CM(i), and the clustering coefficients of the nodes in the projected network, cproj(M)(i),
we can use the same arguments employed in Ref. [36] for multilevel networks. Define ✓(i) as the number of layers in which
i has less than two neighbors. Then,

1
M � ✓(i)

cproj(M)(i)  CM(i)  cproj(M)(i). (30)

Note that Eq. (30) shows that the range of CM(i) increases with ✓(i).
While the previous example (Fig. 4) shows the implicit limitations in defining the clustering coefficient of nodes in a

multiplex from that of individual layers, still it makes sense to provide an alternative ‘‘layers’’ definition. Similarly to the
previous case, let N

⇤
↵ (i) = {j 2 X ; j is a neighbor of i in G↵} and S↵(i) = (N ⇤

↵ (i), E↵(i)), where E↵(i) =
�
(k, j) 2 E↵; k, j 2

N
⇤
↵ (i)

 
. Note that S↵(i) is the subgraph of the layer G↵ induced by N

⇤
↵ (i). Then, the layer clustering coefficient of node i is

defined as

Cly
M

(i) =

2
MP

↵=1
|E↵(i)|

MP
↵=1

|N ⇤
↵ (i)|(|N ⇤

↵ (i)| � 1)
. (31)

Notice that S↵(i) is a subgraph of S↵(i). Accordingly, N ⇤
↵ (i) ✓ N↵(i) and so the largest possible number of links between

neighbors of i in layer ↵ cannot exceed the corresponding largest possible number of links between neighbors of i in N↵(i).

Clustering coefficient
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Fig. 4. (Color online) An example of the difference between clustering coefficients. The local clustering coefficient of all nodes is 0 in each single layer,
but 1 in the projection network.

Table 1
The adjacency matrix of the monoplex in Fig. 5.

x1 x2 x3

x1 0 1 1
x2 0 0 1
x3 1 0 0

Also, we have the relation

|N (i)|(|N (i)| � 1)
2


1
2

MX

↵=1

|N
⇤

↵ (i)|(|N ⇤

↵ (i)| � 1) +

X

k<j

|N
⇤

k (i)||N ⇤

j (i)|, (32)

where the last sum has
⇣

M
2

⌘
terms. We can further assume that the nodes can be rearranged so that |N ⇤

↵ (i)|  |N
⇤

↵+1(i)| for
all 1  ↵  M . Thus, using the method described in Ref. [36], we can obtain a relation between the clustering coefficient in
the projected network cproj(M)(i) and the layer clustering coefficient Cly

M
(i):

Cly
M

(i)  M · cproj(G)(i)

1 + (M � 1)

✓
4 +

✓(i)
M � ✓(i)

◆�
. (33)

Another possible definition of the layer clustering coefficient of a node i is the average over the clustering coefficients
cG↵ (i) of the slices

Cly
proj(M)(i) =

1
M

MX

↵=1

cG↵ . (34)

The following relationship between both clustering coefficients holds [36]:

M · min
1↵M

|N ⇤
↵ (i)|(|N ⇤

↵ (i)| � 1)
2

Cly
proj(M)(i)  Cly

proj(M)(i)  M · max
1↵M

|N ⇤
↵ (i)|(|N ⇤

↵ (i)| � 1)
2

Cly
proj(M)(i). (35)

Further generalizations of the notion of clustering coefficient to multilayer networks have been proposed in Refs.
[23,47]. In Ref. [23], the Authors point out the necessity of extending the notion of triangle to take into account the richness
added by the presence of more than one layer. They define a 2-triangle as a triangle formed by an edge belonging to one
layer and two edges belonging to a second layer. Similarly, a 3-triangle is a triangle which is composed by three edges all
lying in different layers. In order to quantify the added value provided by themultiplex structure in terms of clustering, they
consider two parameters of clustering interdependence, I1 and I2. I1 (I2) is the ratio between the number of triangles in the
multiplex which can be obtained only as 2-triangles (3-triangles), and the number of triangles in the aggregated system.
Then, I = I1 + I2 is the total fraction of triangles of the aggregated network which cannot be found entirely in one of the
layers. They also define a 1-triad centered at node i, for instance j � i � k, as a triad in which both edge (j � i) and edge
(i�k) are on the same layer. Similarly, a 2-triad is a triad whose two links belong to two different layers of the systems. This
way, they establish two further definitions of clustering coefficient for multiplex networks. For each node i the clustering
coefficient Ci1 is the ratio between the number of 2-triangles with a vertex in i and the number of 1-triads centered in i. A
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second clustering coefficient Ci2 is defined as the ratio between the number of 3-triangles with node i as a vertex, and the
number of 2-triads centered in i. As theAuthors point out,while Ci1 is a suitable definition formultiplexeswithM � 2, Ci2 can
only be defined for systems composed of at least three layers, and both coefficients are poorly correlated, so it is necessary to
use both clustering coefficients in order to properly quantify the abundance of triangles in multilayer networks. Averaging
over all the nodes of the system, they obtain the network clustering coefficients C1 and C2.

In Ref. [23] the Authors also generalize the definition of transitivity. They propose twomeasures of transitivity: T1 as the
ratio between the number of 2-triangles and the number of 1-triads, and T2 as the ratio between the number of 3-triangles
and the number of 2-triads. As it is stressed by the Authors, clustering interdependencies I1 and I2, average multiplex
clustering coefficients C1 and C2, andmultiplex transitivities T1 and T2 are all global network variables which give a different
perspective on the multilayer patterns of clustering and triadic closure with respect to the clustering coefficient and the
transitivity computed for each layer of the network.

In Ref. [47], the Authors derive measurements of transitivity for multiplex networks by developing several multiplex
generalizations of the clustering coefficient, and provide a comparison between some different formulations of multiplex
clustering coefficients. For instance, Authors point out that the balance between intralayer versus interlayer clustering is
different in social versus transportation networks, reflecting the fact that transitivity emerges from different mechanisms
in these cases. Such differences are rooted in the new degrees of freedom that arise from interlayer connections, and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. Generalizing clustering
coefficients for multiplex networks thus makes it possible to explore such phenomena and to gain deeper insights into
different types of transitivity in networks. Further multiplex clustering coefficients are defined in Refs. [64,88,89].

2.2.3. Metric structures: shortest paths and distances
The metric structure of a complex network is related to the topological distance between nodes, written in terms of

walks and paths in the graph. So, in order to extend the classical metric concepts to the context of multilayer networks, it
is necessary to establish first the notions of path, walk and length. In order to introduce all these concepts, we will follow a
similar scheme to that used in Ref. [90]. Given a multilayer network M = (G, C), we consider the set

E(M) = {E1, . . . , EM}

[
C. (36)

A walk (of length q � 1) in M is a non-empty alternating sequence

{x↵1
1 , `1, x

↵2
2 , `2, . . . , `q�1, x

↵q
q }, (37)

of nodes and edges with ↵1, ↵2, . . . ,↵q 2 {1, . . . ,M}, such that for all r < q there exists an E 2 E(M) with

`r =
�
x↵r
r , x↵r+1

r+1
�

2 E . (38)
If the edges `1, `2, `q�1 areweighted, the length of thewalk can be defined as the sumof the inverse of the corresponding

weights. If x↵1
1 = x↵q

q , the walk is said to be closed.
A path! = {x↵1

1 , x↵2
2 , . . . , x↵q

q }, between two nodes x↵1
1 and x↵q

q inM is a walk through the nodes ofM in which each node
is visited only once. A cycle is a closed path starting and ending at the same node. If it is possible to find a path between any
pair of its nodes, a multilayer network M is referred to as connected; otherwise it is called disconnected. However, different
types of reachability may be considered [20,23] depending, for example, on whether we are considering only the edges
included in some layers.

The length of a path is the number of edges of that path. Of course, in a multilayer network there are at least two types of
edges, namely intralayer and interlayer edges. Thus, this definition changes depending on whether we consider interlayer
and intralayer edges to be equivalent. Other metric definitions may be easily generalized from monolayer to multilayer
networks. So, a geodesic between two nodes u and v in M is one of the shortest path that connects u and v. The distance duv
between u and v is the length of any geodesic between u and v. The maximum distance D(M) between any two vertices in
M is called the diameter of M. By nuv we will denote the number of different geodesics that join u and v. If x is a node and
` is a link, then nuv(x) and nuv(`) will denote the number of geodesics that join the nodes u and v passing through x and `
respectively.

A multilayer network N = (G0, C
0) is a subnetwork of M = (G, C) if for every � , � with � 6= �, there exist ↵, � with

↵ 6= � such that X 0
� ✓ X↵ , E 0

� ✓ E↵ and E 0

� � ✓ E↵� . A connected component of M is a maximal connected subnetwork of M.
Two paths connecting the same pair of vertices in a multilayer network are said to be vertex-independent if they share no
vertices other than the starting and ending ones. A k-component is a maximal subset of the vertices such that every vertex
in the subset is connected to every other by k independent paths. For the special cases k = 2, k = 3, the k-components are
called bi-components and three-components of themultilayer network. For any given network, the k-components are nested:
every three-component is a subset of a bi-component, and so forth.

The characteristic path length is defined as

L(M) =
1

N(N � 1)

X

u,v2XM

u6=v

duv, (39)

where |XM| = N , and is also a way of measuring the performance of a graph.
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second clustering coefficient Ci2 is defined as the ratio between the number of 3-triangles with node i as a vertex, and the
number of 2-triads centered in i. As theAuthors point out,while Ci1 is a suitable definition formultiplexeswithM � 2, Ci2 can
only be defined for systems composed of at least three layers, and both coefficients are poorly correlated, so it is necessary to
use both clustering coefficients in order to properly quantify the abundance of triangles in multilayer networks. Averaging
over all the nodes of the system, they obtain the network clustering coefficients C1 and C2.

In Ref. [23] the Authors also generalize the definition of transitivity. They propose twomeasures of transitivity: T1 as the
ratio between the number of 2-triangles and the number of 1-triads, and T2 as the ratio between the number of 3-triangles
and the number of 2-triads. As it is stressed by the Authors, clustering interdependencies I1 and I2, average multiplex
clustering coefficients C1 and C2, andmultiplex transitivities T1 and T2 are all global network variables which give a different
perspective on the multilayer patterns of clustering and triadic closure with respect to the clustering coefficient and the
transitivity computed for each layer of the network.

In Ref. [47], the Authors derive measurements of transitivity for multiplex networks by developing several multiplex
generalizations of the clustering coefficient, and provide a comparison between some different formulations of multiplex
clustering coefficients. For instance, Authors point out that the balance between intralayer versus interlayer clustering is
different in social versus transportation networks, reflecting the fact that transitivity emerges from different mechanisms
in these cases. Such differences are rooted in the new degrees of freedom that arise from interlayer connections, and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. Generalizing clustering
coefficients for multiplex networks thus makes it possible to explore such phenomena and to gain deeper insights into
different types of transitivity in networks. Further multiplex clustering coefficients are defined in Refs. [64,88,89].

2.2.3. Metric structures: shortest paths and distances
The metric structure of a complex network is related to the topological distance between nodes, written in terms of

walks and paths in the graph. So, in order to extend the classical metric concepts to the context of multilayer networks, it
is necessary to establish first the notions of path, walk and length. In order to introduce all these concepts, we will follow a
similar scheme to that used in Ref. [90]. Given a multilayer network M = (G, C), we consider the set
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1 and x↵q

q inM is a walk through the nodes ofM in which each node
is visited only once. A cycle is a closed path starting and ending at the same node. If it is possible to find a path between any
pair of its nodes, a multilayer network M is referred to as connected; otherwise it is called disconnected. However, different
types of reachability may be considered [20,23] depending, for example, on whether we are considering only the edges
included in some layers.

The length of a path is the number of edges of that path. Of course, in a multilayer network there are at least two types of
edges, namely intralayer and interlayer edges. Thus, this definition changes depending on whether we consider interlayer
and intralayer edges to be equivalent. Other metric definitions may be easily generalized from monolayer to multilayer
networks. So, a geodesic between two nodes u and v in M is one of the shortest path that connects u and v. The distance duv
between u and v is the length of any geodesic between u and v. The maximum distance D(M) between any two vertices in
M is called the diameter of M. By nuv we will denote the number of different geodesics that join u and v. If x is a node and
` is a link, then nuv(x) and nuv(`) will denote the number of geodesics that join the nodes u and v passing through x and `
respectively.

A multilayer network N = (G0, C
0) is a subnetwork of M = (G, C) if for every � , � with � 6= �, there exist ↵, � with

↵ 6= � such that X 0
� ✓ X↵ , E 0

� ✓ E↵ and E 0

� � ✓ E↵� . A connected component of M is a maximal connected subnetwork of M.
Two paths connecting the same pair of vertices in a multilayer network are said to be vertex-independent if they share no
vertices other than the starting and ending ones. A k-component is a maximal subset of the vertices such that every vertex
in the subset is connected to every other by k independent paths. For the special cases k = 2, k = 3, the k-components are
called bi-components and three-components of themultilayer network. For any given network, the k-components are nested:
every three-component is a subset of a bi-component, and so forth.

The characteristic path length is defined as
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N(N � 1)

X

u,v2XM

u6=v
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where |XM| = N , and is also a way of measuring the performance of a graph.
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second clustering coefficient Ci2 is defined as the ratio between the number of 3-triangles with node i as a vertex, and the
number of 2-triads centered in i. As theAuthors point out,while Ci1 is a suitable definition formultiplexeswithM � 2, Ci2 can
only be defined for systems composed of at least three layers, and both coefficients are poorly correlated, so it is necessary to
use both clustering coefficients in order to properly quantify the abundance of triangles in multilayer networks. Averaging
over all the nodes of the system, they obtain the network clustering coefficients C1 and C2.

In Ref. [23] the Authors also generalize the definition of transitivity. They propose twomeasures of transitivity: T1 as the
ratio between the number of 2-triangles and the number of 1-triads, and T2 as the ratio between the number of 3-triangles
and the number of 2-triads. As it is stressed by the Authors, clustering interdependencies I1 and I2, average multiplex
clustering coefficients C1 and C2, andmultiplex transitivities T1 and T2 are all global network variables which give a different
perspective on the multilayer patterns of clustering and triadic closure with respect to the clustering coefficient and the
transitivity computed for each layer of the network.

In Ref. [47], the Authors derive measurements of transitivity for multiplex networks by developing several multiplex
generalizations of the clustering coefficient, and provide a comparison between some different formulations of multiplex
clustering coefficients. For instance, Authors point out that the balance between intralayer versus interlayer clustering is
different in social versus transportation networks, reflecting the fact that transitivity emerges from different mechanisms
in these cases. Such differences are rooted in the new degrees of freedom that arise from interlayer connections, and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. Generalizing clustering
coefficients for multiplex networks thus makes it possible to explore such phenomena and to gain deeper insights into
different types of transitivity in networks. Further multiplex clustering coefficients are defined in Refs. [64,88,89].

2.2.3. Metric structures: shortest paths and distances
The metric structure of a complex network is related to the topological distance between nodes, written in terms of

walks and paths in the graph. So, in order to extend the classical metric concepts to the context of multilayer networks, it
is necessary to establish first the notions of path, walk and length. In order to introduce all these concepts, we will follow a
similar scheme to that used in Ref. [90]. Given a multilayer network M = (G, C), we consider the set

E(M) = {E1, . . . , EM}
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q }, between two nodes x↵1
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q inM is a walk through the nodes ofM in which each node
is visited only once. A cycle is a closed path starting and ending at the same node. If it is possible to find a path between any
pair of its nodes, a multilayer network M is referred to as connected; otherwise it is called disconnected. However, different
types of reachability may be considered [20,23] depending, for example, on whether we are considering only the edges
included in some layers.

The length of a path is the number of edges of that path. Of course, in a multilayer network there are at least two types of
edges, namely intralayer and interlayer edges. Thus, this definition changes depending on whether we consider interlayer
and intralayer edges to be equivalent. Other metric definitions may be easily generalized from monolayer to multilayer
networks. So, a geodesic between two nodes u and v in M is one of the shortest path that connects u and v. The distance duv
between u and v is the length of any geodesic between u and v. The maximum distance D(M) between any two vertices in
M is called the diameter of M. By nuv we will denote the number of different geodesics that join u and v. If x is a node and
` is a link, then nuv(x) and nuv(`) will denote the number of geodesics that join the nodes u and v passing through x and `
respectively.

A multilayer network N = (G0, C
0) is a subnetwork of M = (G, C) if for every � , � with � 6= �, there exist ↵, � with

↵ 6= � such that X 0
� ✓ X↵ , E 0

� ✓ E↵ and E 0

� � ✓ E↵� . A connected component of M is a maximal connected subnetwork of M.
Two paths connecting the same pair of vertices in a multilayer network are said to be vertex-independent if they share no
vertices other than the starting and ending ones. A k-component is a maximal subset of the vertices such that every vertex
in the subset is connected to every other by k independent paths. For the special cases k = 2, k = 3, the k-components are
called bi-components and three-components of themultilayer network. For any given network, the k-components are nested:
every three-component is a subset of a bi-component, and so forth.

The characteristic path length is defined as

L(M) =
1

N(N � 1)

X

u,v2XM

u6=v

duv, (39)

where |XM| = N , and is also a way of measuring the performance of a graph.
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second clustering coefficient Ci2 is defined as the ratio between the number of 3-triangles with node i as a vertex, and the
number of 2-triads centered in i. As theAuthors point out,while Ci1 is a suitable definition formultiplexeswithM � 2, Ci2 can
only be defined for systems composed of at least three layers, and both coefficients are poorly correlated, so it is necessary to
use both clustering coefficients in order to properly quantify the abundance of triangles in multilayer networks. Averaging
over all the nodes of the system, they obtain the network clustering coefficients C1 and C2.

In Ref. [23] the Authors also generalize the definition of transitivity. They propose twomeasures of transitivity: T1 as the
ratio between the number of 2-triangles and the number of 1-triads, and T2 as the ratio between the number of 3-triangles
and the number of 2-triads. As it is stressed by the Authors, clustering interdependencies I1 and I2, average multiplex
clustering coefficients C1 and C2, andmultiplex transitivities T1 and T2 are all global network variables which give a different
perspective on the multilayer patterns of clustering and triadic closure with respect to the clustering coefficient and the
transitivity computed for each layer of the network.

In Ref. [47], the Authors derive measurements of transitivity for multiplex networks by developing several multiplex
generalizations of the clustering coefficient, and provide a comparison between some different formulations of multiplex
clustering coefficients. For instance, Authors point out that the balance between intralayer versus interlayer clustering is
different in social versus transportation networks, reflecting the fact that transitivity emerges from different mechanisms
in these cases. Such differences are rooted in the new degrees of freedom that arise from interlayer connections, and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. Generalizing clustering
coefficients for multiplex networks thus makes it possible to explore such phenomena and to gain deeper insights into
different types of transitivity in networks. Further multiplex clustering coefficients are defined in Refs. [64,88,89].

2.2.3. Metric structures: shortest paths and distances
The metric structure of a complex network is related to the topological distance between nodes, written in terms of
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is necessary to establish first the notions of path, walk and length. In order to introduce all these concepts, we will follow a
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q inM is a walk through the nodes ofM in which each node
is visited only once. A cycle is a closed path starting and ending at the same node. If it is possible to find a path between any
pair of its nodes, a multilayer network M is referred to as connected; otherwise it is called disconnected. However, different
types of reachability may be considered [20,23] depending, for example, on whether we are considering only the edges
included in some layers.

The length of a path is the number of edges of that path. Of course, in a multilayer network there are at least two types of
edges, namely intralayer and interlayer edges. Thus, this definition changes depending on whether we consider interlayer
and intralayer edges to be equivalent. Other metric definitions may be easily generalized from monolayer to multilayer
networks. So, a geodesic between two nodes u and v in M is one of the shortest path that connects u and v. The distance duv
between u and v is the length of any geodesic between u and v. The maximum distance D(M) between any two vertices in
M is called the diameter of M. By nuv we will denote the number of different geodesics that join u and v. If x is a node and
` is a link, then nuv(x) and nuv(`) will denote the number of geodesics that join the nodes u and v passing through x and `
respectively.
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Two paths connecting the same pair of vertices in a multilayer network are said to be vertex-independent if they share no
vertices other than the starting and ending ones. A k-component is a maximal subset of the vertices such that every vertex
in the subset is connected to every other by k independent paths. For the special cases k = 2, k = 3, the k-components are
called bi-components and three-components of themultilayer network. For any given network, the k-components are nested:
every three-component is a subset of a bi-component, and so forth.

The characteristic path length is defined as
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number of 2-triads centered in i. As theAuthors point out,while Ci1 is a suitable definition formultiplexeswithM � 2, Ci2 can
only be defined for systems composed of at least three layers, and both coefficients are poorly correlated, so it is necessary to
use both clustering coefficients in order to properly quantify the abundance of triangles in multilayer networks. Averaging
over all the nodes of the system, they obtain the network clustering coefficients C1 and C2.

In Ref. [23] the Authors also generalize the definition of transitivity. They propose twomeasures of transitivity: T1 as the
ratio between the number of 2-triangles and the number of 1-triads, and T2 as the ratio between the number of 3-triangles
and the number of 2-triads. As it is stressed by the Authors, clustering interdependencies I1 and I2, average multiplex
clustering coefficients C1 and C2, andmultiplex transitivities T1 and T2 are all global network variables which give a different
perspective on the multilayer patterns of clustering and triadic closure with respect to the clustering coefficient and the
transitivity computed for each layer of the network.

In Ref. [47], the Authors derive measurements of transitivity for multiplex networks by developing several multiplex
generalizations of the clustering coefficient, and provide a comparison between some different formulations of multiplex
clustering coefficients. For instance, Authors point out that the balance between intralayer versus interlayer clustering is
different in social versus transportation networks, reflecting the fact that transitivity emerges from different mechanisms
in these cases. Such differences are rooted in the new degrees of freedom that arise from interlayer connections, and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. Generalizing clustering
coefficients for multiplex networks thus makes it possible to explore such phenomena and to gain deeper insights into
different types of transitivity in networks. Further multiplex clustering coefficients are defined in Refs. [64,88,89].

2.2.3. Metric structures: shortest paths and distances
The metric structure of a complex network is related to the topological distance between nodes, written in terms of

walks and paths in the graph. So, in order to extend the classical metric concepts to the context of multilayer networks, it
is necessary to establish first the notions of path, walk and length. In order to introduce all these concepts, we will follow a
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pair of its nodes, a multilayer network M is referred to as connected; otherwise it is called disconnected. However, different
types of reachability may be considered [20,23] depending, for example, on whether we are considering only the edges
included in some layers.

The length of a path is the number of edges of that path. Of course, in a multilayer network there are at least two types of
edges, namely intralayer and interlayer edges. Thus, this definition changes depending on whether we consider interlayer
and intralayer edges to be equivalent. Other metric definitions may be easily generalized from monolayer to multilayer
networks. So, a geodesic between two nodes u and v in M is one of the shortest path that connects u and v. The distance duv
between u and v is the length of any geodesic between u and v. The maximum distance D(M) between any two vertices in
M is called the diameter of M. By nuv we will denote the number of different geodesics that join u and v. If x is a node and
` is a link, then nuv(x) and nuv(`) will denote the number of geodesics that join the nodes u and v passing through x and `
respectively.
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↵ 6= � such that X 0
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Two paths connecting the same pair of vertices in a multilayer network are said to be vertex-independent if they share no
vertices other than the starting and ending ones. A k-component is a maximal subset of the vertices such that every vertex
in the subset is connected to every other by k independent paths. For the special cases k = 2, k = 3, the k-components are
called bi-components and three-components of themultilayer network. For any given network, the k-components are nested:
every three-component is a subset of a bi-component, and so forth.

The characteristic path length is defined as
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where |XM| = N , and is also a way of measuring the performance of a graph.
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The concept of efficiency, introduced by Latora and Marchiori in Ref. [91] may also be extended to multilayer networks
in a similar way to the one used in Ref. [36]. With the same notation, the efficiency of a multilayer network M is defined as

E(M) =
1

N(N � 1)

X

u,v2XM

u6=v

1
duv

. (40)

It is quite natural to try to establish comparisons between the efficiency E(M) of a multilayer network M, the efficiency
E(proj(M)) of its projection and the efficiencies of the different layers E(G↵). In Ref. [36] there are some analytical results
that establish some relationships between these parameters.

If we consider interlayer and intralayer edges not to be equivalent, we can give alternative definitions of the metric
quantities. Let M = (G, C) be a multilayer network, and

! = {x↵11 , `1, x
↵2
2 , `2, . . . , `q, x

↵q+1
q+1 }, (41)

be a path in M. The length of ! can be defined as the non-negative value

`(!) = q + �

qX

j=2

�(j), (42)

where

�(j) =

⇢
1 if `j 2 C, (i.e. if `j is a crossed layer)
0 otherwise, (43)

and � is an arbitrarily chosen non-negative parameter.
In this case, the distance in M between two nodes i and j is the minimal length among all possible paths in from i to j.
Notice that for � = 0, the previous definition reduces to the natural metric in the projection network proj(M), while

positive values of � correspond to metrics that take into account also the interplay between the different layers.
One can generalize the definition of path length even further by replacing the jumping weight � with an M ⇥ M non-

negative matrix⇥ = (�(G�,Gµ)), to account for different distances between layers. Thus, the length of a path ! becomes

˜̀(!) = q +

qX

j=2

�̃(j), (44)

where

�̃(j) =

⇢
�(G� (j�1),G� (j)) if G� (j) 6= G� (j�1),
0 otherwise. (45)

The jumping weights can be further extended to include a dependence not only on the two layers involved in the layer jump,
but also on the node from which the jump starts.

For a multiplex network, it is also important to quantify the participation of single nodes to the structure of each layer
in terms of node reachability [23]. Reachability is an important feature in networked systems. In single-layer networks
it depends on the existence and length of shortest paths connecting pairs of nodes. In multilevel systems, shortest paths
may significantly differ between different layers, as well as between each layer and the aggregated topological networks.
To address this, the so-called node interdependence was introduced in Refs. [57,92]. The interdependence �i of a node i is
defined as:

�i =

X

j6=i

 ij

�ij
, (46)

where �ij is the total number of shortest paths between node i and node j on themultiplex network, and ij is the number of
shortest paths betweennode i andnode jwhichmakeuse of links in twoormore layers. Therefore, the node interdependence
is equal to 1 when all shortest paths make use of edges laying on at least two layers, and equal to 0 when all shortest paths
use only one layer of the system. Averaging �i over all nodes, we obtain the network interdependence.

The interdependence is a genuinemultiplexmeasure that provides information in terms of reachability. It is slightly anti-
correlated to measures of degree such as the overlapping degree. In fact, a node with high overlapping degree has a higher
number of links that can be the first step in a path toward other nodes; as such, it is likely to have a low �i. Conversely, a node
with low overlapping degree is likely to have a high value of �i, since its shortest paths are constrained to a smaller set of
edges and layers as first step. Thismeasure is validated in Ref. [23] on the data set of Indonesian terrorists, where information
among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications and
business relationships.
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It is quite natural to try to establish comparisons between the efficiency E(M) of a multilayer network M, the efficiency
E(proj(M)) of its projection and the efficiencies of the different layers E(G↵). In Ref. [36] there are some analytical results
that establish some relationships between these parameters.
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Notice that for � = 0, the previous definition reduces to the natural metric in the projection network proj(M), while

positive values of � correspond to metrics that take into account also the interplay between the different layers.
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The jumping weights can be further extended to include a dependence not only on the two layers involved in the layer jump,
but also on the node from which the jump starts.

For a multiplex network, it is also important to quantify the participation of single nodes to the structure of each layer
in terms of node reachability [23]. Reachability is an important feature in networked systems. In single-layer networks
it depends on the existence and length of shortest paths connecting pairs of nodes. In multilevel systems, shortest paths
may significantly differ between different layers, as well as between each layer and the aggregated topological networks.
To address this, the so-called node interdependence was introduced in Refs. [57,92]. The interdependence �i of a node i is
defined as:
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where �ij is the total number of shortest paths between node i and node j on themultiplex network, and ij is the number of
shortest paths betweennode i andnode jwhichmakeuse of links in twoormore layers. Therefore, the node interdependence
is equal to 1 when all shortest paths make use of edges laying on at least two layers, and equal to 0 when all shortest paths
use only one layer of the system. Averaging �i over all nodes, we obtain the network interdependence.

The interdependence is a genuinemultiplexmeasure that provides information in terms of reachability. It is slightly anti-
correlated to measures of degree such as the overlapping degree. In fact, a node with high overlapping degree has a higher
number of links that can be the first step in a path toward other nodes; as such, it is likely to have a low �i. Conversely, a node
with low overlapping degree is likely to have a high value of �i, since its shortest paths are constrained to a smaller set of
edges and layers as first step. Thismeasure is validated in Ref. [23] on the data set of Indonesian terrorists, where information
among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications and
business relationships.

Interdependence   = #  shortest paths between ij 

 = # shortest paths between ij in >2 layers

σij

ψij
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2.2.4. Matrices and spectral properties
It is well known that the spectral properties of the adjacency and Laplacian matrices of a network provide insights into

its structure and dynamics [9,93,94]. A similar situation is possible formultilayer networks, if propermatrix representations
are introduced.

Given a multilayer network M, several adjacencymatrices can give information about its structure: amongst others, the
most used are the adjacencymatrix A[↵] of each layerG↵ , the adjacencymatrix AM of the projection network proj(M) and the
supra-adjacency matrix AM . The spectrum of the supra-adjacency matrix is directly related to several dynamical processes
that take place on amultilayer network. Using some results from interlacing of eigenvalues of quotients ofmatrices [93–95],
in Ref. [79] it was proven that if �1  · · ·  �N is the spectrumof the supra-adjacencymatrix AM of an undirectedmultilayer
network and µ1  · · ·  µn↵ is the spectrum of the adjacency matrix A[↵] of layer G↵ , then for every 1  k  n↵

�k  µk  �k+N�n↵ . (47)

A similar situation occurs for the Laplacian matrix of a multiplex network. The Laplacian matrix LM = L (also called
supra-Laplacian matrix) of a multiplex M is defined as theMN ⇥ MN matrix of the form:

L =

0

BBB@

D1L1 0 . . . 0
0 D2L2 . . . 0
...

...
. . .

...

0 0 . . . DMLM

1

CCCA
+

0

BBBBBBBB@

X

�

D1� I �D12I . . . �D1M I

�D21I
X

�

D2� I . . . �D2M I

...
...

. . .
...

�DM1I �DM2I . . .
X

�

DM� I

1

CCCCCCCCA

. (48)

In the equation above, I is theN⇥N identitymatrix and L↵ is the usualN⇥N Laplacianmatrix of the network layer ↵ whose
elements are L↵

ij = s↵i �ij � w↵
ij where s↵i is the strength of node i in layer ↵, s↵i =

P
j w

↵
ij . We will see in Section 5 that the

diffusion dynamics on a multiplex network is strongly related to the spectral properties of L. In Ref. [79], the Authors prove
that if �1  · · ·  �N is the spectrum of the Laplacian matrix L of an undirected multilayer network and µ1  · · ·  µn↵

is the spectrum of the Laplacian matrix L↵ of layer G↵ , then for every 1  k  n↵

µk  �k+N�n↵ . (49)

Similar results can be found using perturbative analysis [59,96].
In addition to the spectra of the adjacency and Laplacian matrices, other types of spectral properties have been studied

for multiplex network, such as the irreducibility [97]. Several problems in network theory involve the analysis not only of
the eigenvalues, but also of the eigenvectors of a matrix [9]. This analysis typically includes the study of the existence and
uniqueness of a positive and normalized eigenvector (Perron vector), whose existence is guaranteed if the corresponding
matrix is irreducible (by using the classic Perron–Frobenius theorem). As for the spectral properties, it is possible to relate
the irreducibility of such a matrix with the irreducibility in each layer and on the projection network. In Refs. [28,97] it was
shown that if wij > 0 and the adjacency matrix AM of the projection network proj(M) is irreducible, then the matrix A⌦

defining the global heterogeneous eigenvector-like centrality is irreducible. A similar situation occurs when we consider
random walkers in multiplex networks [98]. In this case, the uniqueness of a stationary state of the Markov process is
guaranteed by the irreducibility of a matrix of the form

B =

0

BB@

P11 P12 · · · P1M
P21 P22 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PMM

1

CCA 2 R(NM)⇥(NM), (50)

where P↵� = W↵� �A[�] + v↵� I,W↵� 2 RN⇥N , v↵� 2 RN , andW↵� �A[�] is the Hadamard product of matricesW↵� and A[�]

(see Ref. [97]). It can be proven that, under some hypotheses, if the adjacency matrix AM of the projection network proj(M)
is irreducible, then B is irreducible and hence the random walkers proposed in Ref. [98] have a unique stationary state.

2.2.5. Mesoscales: motifs and modular structures
An essential method of network analysis is the detection of mesoscopic structures known as communities (or cohesive

groups). These communities are disjoint groups (sets) of nodes which are more densely connected to each other than they
are to the rest of the network [12,99,100]. Modularity is a scalar that can be calculated for any partition of a network into
disjoint sets of nodes. Effectively, modularity is a quality function that counts intracommunity edges compared to what one
would expect at random. Thus, one tries to determine a partition thatmaximizesmodularity to identify communities within
a network.

In Ref. [21], there is a definition of modularity for multilayer networks in which the Authors introduce a tensor that
encodes the random connections defining the null model. Ref. [68] provides a framework for the study of community

Supra-laplacian 
for multilayer networks

Multilayer Networks
Observables

Walks

1 when all shortest paths use 
edges in at least two layers


0 when all shortest paths use 
only one layer of the system.



Multilayer Networks
Correlations

S. Boccaletti et al. / Physics Reports 544 (2014) 1–122 21

Discovering the statistically significant correlations in multilayer networks is likely to be one of the major goals of network
science for the next years. Here we outline the major types of correlations explored so far. We distinguish between:

• Interlayer degree correlations
Generally speaking these correlations are able to indicate if the hubs in one layer are also the hubs, or they are typically
low degree nodes, in the other layer.

• Overlap and multidegree
The node connectivity patterns can be correlated in two or more layers and these correlations can be captured by the
overlap of the links. For example, we usually have a large fraction of friends with which we communicate through
multiple means of communications, such as phone, email and instant messaging. This implies that the mobile phone
social network has a significant overlapwith the one of email communication or the one of instantmessaging. The overlap
of the links can be quantified by the global or local overlap between two layers, or by the multidegrees of the nodes that
determine the specific overlapping pattern.

• Multistrengths and inverse multiparticipation ratio of weighted multiplex
The weights of the links in the different layers can be correlated with other structural properties of the multiplex.
For example, we tend to cite collaborators differently from other scientists. These types of correlations between
structural properties of the multiplex and the weights distribution are captured by the multistrengths and inverse
multiparticipation ratio.

• Node pairwise multiplexity
When the nodes are not all active in all layers two nodes can have correlated activity patterns. For example they can be
active on the same, or on different layers. These correlations are captured by the Node Pairwise Multiplexity.

• Layer pairwise multiplexity
When the nodes are not all active in all layers, two layers can have correlated activity patterns. For example they
can contain the same active nodes, or different active nodes. These correlations are captured by the Layer Pairwise
Multiplexity.

2.4.1. Degree correlations in multiplex networks
Every node i = 1, 2, . . . ,N of a multiplex has a degree k[↵]

i in each layer ↵ = 1, 2, . . . ,M . The degrees of the same node
in different layers can be correlated. For example, a node that is a hub in the scientific collaboration network is likely to
be a hub also in the citation network between scientists. Therefore, the degree in the collaboration network is positively
correlated with that of the citation network. Negative correlations also exist, when the hubs of one layer are not the hubs of
another layer. The methods to evaluate the degree correlations between a layer ↵ and a layer � are the following:

• Full characterization of the matrix P(k↵, k�).
One can construct the matrix

P(k↵, k�) =
N(k↵, k�)

N
, (63)

where N(k↵, k�) is the number of nodes that have degree k↵ in layer ↵ and degree k� in layer � . From this matrix, the
full pattern of correlations can be determined.

• Average degree in layer ↵ conditioned on the degree of the node in layer �
Amore coarse-grainedmeasure of correlation is k̄↵(k�), i.e. the average degree of a node in layer ↵ conditioned to the

degree of the same node in layer �:

k̄↵(k�) =

X

k↵
k↵P(k↵

|k�) =

P
k↵

k↵P(k↵, k�)

P
k↵

P(k↵, k�)
. (64)

If this function does not depend on k� , the degrees in the two layers are uncorrelated. If this function is increasing
(decreasing) in k� , the degrees of the nodes in the two layers are positively (negatively) correlated.

• Pearson, Spearman and Kendall correlations coefficients
Even more coarse-grained correlation measures are the Pearson, the Spearman and the Kendall’s correlations

coefficients.
The Pearson correlation coefficient r↵� is given by

r↵� =

D
k[↵]

i k[�]

i

E
�

D
k[↵]

i

E D
k[�]

i

E
,

�↵��

(65)

where �↵ =

rD
k[↵]

i k[↵]

i

E
�

D
k[↵]

i

E2
. The Pearson correlation coefficient can be dominated by the correlations of the high

degree nodes if the degree distributions are broad.
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Discovering the statistically significant correlations in multilayer networks is likely to be one of the major goals of network
science for the next years. Here we outline the major types of correlations explored so far. We distinguish between:

• Interlayer degree correlations
Generally speaking these correlations are able to indicate if the hubs in one layer are also the hubs, or they are typically
low degree nodes, in the other layer.

• Overlap and multidegree
The node connectivity patterns can be correlated in two or more layers and these correlations can be captured by the
overlap of the links. For example, we usually have a large fraction of friends with which we communicate through
multiple means of communications, such as phone, email and instant messaging. This implies that the mobile phone
social network has a significant overlapwith the one of email communication or the one of instantmessaging. The overlap
of the links can be quantified by the global or local overlap between two layers, or by the multidegrees of the nodes that
determine the specific overlapping pattern.
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The weights of the links in the different layers can be correlated with other structural properties of the multiplex.
For example, we tend to cite collaborators differently from other scientists. These types of correlations between
structural properties of the multiplex and the weights distribution are captured by the multistrengths and inverse
multiparticipation ratio.

• Node pairwise multiplexity
When the nodes are not all active in all layers two nodes can have correlated activity patterns. For example they can be
active on the same, or on different layers. These correlations are captured by the Node Pairwise Multiplexity.
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When the nodes are not all active in all layers, two layers can have correlated activity patterns. For example they
can contain the same active nodes, or different active nodes. These correlations are captured by the Layer Pairwise
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i in each layer ↵ = 1, 2, . . . ,M . The degrees of the same node
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be a hub also in the citation network between scientists. Therefore, the degree in the collaboration network is positively
correlated with that of the citation network. Negative correlations also exist, when the hubs of one layer are not the hubs of
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where N(k↵, k�) is the number of nodes that have degree k↵ in layer ↵ and degree k� in layer � . From this matrix, the
full pattern of correlations can be determined.

• Average degree in layer ↵ conditioned on the degree of the node in layer �
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If this function does not depend on k� , the degrees in the two layers are uncorrelated. If this function is increasing
(decreasing) in k� , the degrees of the nodes in the two layers are positively (negatively) correlated.

• Pearson, Spearman and Kendall correlations coefficients
Even more coarse-grained correlation measures are the Pearson, the Spearman and the Kendall’s correlations

coefficients.
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Full characterisation of matrix P(kα, kβ)

Average degree in layer  conditioned
on the degree of the node in layer 
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β
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Discovering the statistically significant correlations in multilayer networks is likely to be one of the major goals of network
science for the next years. Here we outline the major types of correlations explored so far. We distinguish between:

• Interlayer degree correlations
Generally speaking these correlations are able to indicate if the hubs in one layer are also the hubs, or they are typically
low degree nodes, in the other layer.

• Overlap and multidegree
The node connectivity patterns can be correlated in two or more layers and these correlations can be captured by the
overlap of the links. For example, we usually have a large fraction of friends with which we communicate through
multiple means of communications, such as phone, email and instant messaging. This implies that the mobile phone
social network has a significant overlapwith the one of email communication or the one of instantmessaging. The overlap
of the links can be quantified by the global or local overlap between two layers, or by the multidegrees of the nodes that
determine the specific overlapping pattern.

• Multistrengths and inverse multiparticipation ratio of weighted multiplex
The weights of the links in the different layers can be correlated with other structural properties of the multiplex.
For example, we tend to cite collaborators differently from other scientists. These types of correlations between
structural properties of the multiplex and the weights distribution are captured by the multistrengths and inverse
multiparticipation ratio.

• Node pairwise multiplexity
When the nodes are not all active in all layers two nodes can have correlated activity patterns. For example they can be
active on the same, or on different layers. These correlations are captured by the Node Pairwise Multiplexity.

• Layer pairwise multiplexity
When the nodes are not all active in all layers, two layers can have correlated activity patterns. For example they
can contain the same active nodes, or different active nodes. These correlations are captured by the Layer Pairwise
Multiplexity.

2.4.1. Degree correlations in multiplex networks
Every node i = 1, 2, . . . ,N of a multiplex has a degree k[↵]

i in each layer ↵ = 1, 2, . . . ,M . The degrees of the same node
in different layers can be correlated. For example, a node that is a hub in the scientific collaboration network is likely to
be a hub also in the citation network between scientists. Therefore, the degree in the collaboration network is positively
correlated with that of the citation network. Negative correlations also exist, when the hubs of one layer are not the hubs of
another layer. The methods to evaluate the degree correlations between a layer ↵ and a layer � are the following:

• Full characterization of the matrix P(k↵, k�).
One can construct the matrix

P(k↵, k�) =
N(k↵, k�)

N
, (63)

where N(k↵, k�) is the number of nodes that have degree k↵ in layer ↵ and degree k� in layer � . From this matrix, the
full pattern of correlations can be determined.

• Average degree in layer ↵ conditioned on the degree of the node in layer �
Amore coarse-grainedmeasure of correlation is k̄↵(k�), i.e. the average degree of a node in layer ↵ conditioned to the

degree of the same node in layer �:
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If this function does not depend on k� , the degrees in the two layers are uncorrelated. If this function is increasing
(decreasing) in k� , the degrees of the nodes in the two layers are positively (negatively) correlated.

• Pearson, Spearman and Kendall correlations coefficients
Even more coarse-grained correlation measures are the Pearson, the Spearman and the Kendall’s correlations

coefficients.
The Pearson correlation coefficient r↵� is given by
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Discovering the statistically significant correlations in multilayer networks is likely to be one of the major goals of network
science for the next years. Here we outline the major types of correlations explored so far. We distinguish between:

• Interlayer degree correlations
Generally speaking these correlations are able to indicate if the hubs in one layer are also the hubs, or they are typically
low degree nodes, in the other layer.

• Overlap and multidegree
The node connectivity patterns can be correlated in two or more layers and these correlations can be captured by the
overlap of the links. For example, we usually have a large fraction of friends with which we communicate through
multiple means of communications, such as phone, email and instant messaging. This implies that the mobile phone
social network has a significant overlapwith the one of email communication or the one of instantmessaging. The overlap
of the links can be quantified by the global or local overlap between two layers, or by the multidegrees of the nodes that
determine the specific overlapping pattern.

• Multistrengths and inverse multiparticipation ratio of weighted multiplex
The weights of the links in the different layers can be correlated with other structural properties of the multiplex.
For example, we tend to cite collaborators differently from other scientists. These types of correlations between
structural properties of the multiplex and the weights distribution are captured by the multistrengths and inverse
multiparticipation ratio.

• Node pairwise multiplexity
When the nodes are not all active in all layers two nodes can have correlated activity patterns. For example they can be
active on the same, or on different layers. These correlations are captured by the Node Pairwise Multiplexity.

• Layer pairwise multiplexity
When the nodes are not all active in all layers, two layers can have correlated activity patterns. For example they
can contain the same active nodes, or different active nodes. These correlations are captured by the Layer Pairwise
Multiplexity.

2.4.1. Degree correlations in multiplex networks
Every node i = 1, 2, . . . ,N of a multiplex has a degree k[↵]

i in each layer ↵ = 1, 2, . . . ,M . The degrees of the same node
in different layers can be correlated. For example, a node that is a hub in the scientific collaboration network is likely to
be a hub also in the citation network between scientists. Therefore, the degree in the collaboration network is positively
correlated with that of the citation network. Negative correlations also exist, when the hubs of one layer are not the hubs of
another layer. The methods to evaluate the degree correlations between a layer ↵ and a layer � are the following:

• Full characterization of the matrix P(k↵, k�).
One can construct the matrix

P(k↵, k�) =
N(k↵, k�)

N
, (63)

where N(k↵, k�) is the number of nodes that have degree k↵ in layer ↵ and degree k� in layer � . From this matrix, the
full pattern of correlations can be determined.

• Average degree in layer ↵ conditioned on the degree of the node in layer �
Amore coarse-grainedmeasure of correlation is k̄↵(k�), i.e. the average degree of a node in layer ↵ conditioned to the

degree of the same node in layer �:

k̄↵(k�) =

X

k↵
k↵P(k↵

|k�) =

P
k↵

k↵P(k↵, k�)

P
k↵

P(k↵, k�)
. (64)

If this function does not depend on k� , the degrees in the two layers are uncorrelated. If this function is increasing
(decreasing) in k� , the degrees of the nodes in the two layers are positively (negatively) correlated.

• Pearson, Spearman and Kendall correlations coefficients
Even more coarse-grained correlation measures are the Pearson, the Spearman and the Kendall’s correlations

coefficients.
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. The Pearson correlation coefficient can be dominated by the correlations of the high

degree nodes if the degree distributions are broad.
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MP

UC

MN

Fig. 8. (Color online) Schematic illustration of three kinds of correlated multiplex networks, maximally-positive (MP), uncorrelated (UC), and maximally-
negative (MN). Each layer of the networks has different types of links, indicated by solid and dashed links, respectively.
Source: Reprinted figure with permission from Ref. [48].
© 2014, by the American Physical Society.

Fig. 9. (Color online) Example of all possible multilinks in a multiplex network with M = 2 layers and N = 5 nodes. Nodes i and j are linked by one
multilink Em = (m↵,m↵0 ).
Source: Reprinted figure from Ref. [113].

communication and trade layers. Even the two ‘‘negative’’ layers of enmity and attack have significant overlap of the links.
As a second example of multiplex network with significant overlap, consider the APS data set of citations and collaboration
networks [113]. The two layers in this data set display significant overlap because two co-authors are also usually citing
each other in their papers.

Oneway to characterize the link overlap is by introducing the concept ofmultilinks [49,113]. Amultilink fully determines
all the links present between any given two nodes i and j in the multiplex. Consider for example the multiplex with M = 2
layers, i.e. the duplex shown in Fig. 9. Nodes 1 and 2 are connected by one link in the first layer and one link in the second.
Thus, we say that the nodes are connected by a multilink (1, 1). Similarly, nodes 2 and 3 are connected by one link in the
first layer and no link in layer 2. Therefore, they are connected by a multilink (1, 0). In general, for a multiplex of M layers



S. Boccaletti et al. / Physics Reports 544 (2014) 1–122 25

respectively. Themultistrength s Em
i,↵ measures the total weights of the links incident to node i in layer ↵ that form amultilink

of type Em. For example, in a social multiplex network where each layer is either mobile phone communication (layer 1) or
email communication (layer 2), s(1,0)i,1 is the total strength of phone calls of node iwith people that do not communicate with
it by email, s(0,1)i,2 is the total strength of email contacts of node i with people that do not communicate with it via mobile
phone, s(1,1)i,1 is the total strength of phone calls of node iwith people that also communicate with it via email, and s(1,1)i,2 is the
total strength of email communication of node i with people that also communicate with it via mobile phone. The inverse
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layer ↵ and at the same time are part of a multilink Em. Since for every layer ↵ and node i the non trivial multistrengths must
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i,↵ is given by 2M�1. Therefore, for each node,
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with exponents � Em,↵ � 1 and � Em,↵  1. In Ref. [113] the weighted multilink properties of multiplex networks between
scientist collaborating (in layer 1) and citing each other (in layer 2) have been analyzed starting from the APS data set. In this
case the citation network is also directed, and the Authors find that the exponents � and � depend on the type of multilink,
i.e. they are significantly different for links without overlap and for links with overlap. It is clear from this analysis thatmany
weightedmultiplex networks have a distribution of theweights that depends on the non-trivial correlations existing in their
structure. In Fig. 10, the multistrength and inverse multiparticipation ratio for the collaboration and citation networks of
PRE Authors are shown.

2.4.4. The activities of the nodes and the pairwise multiplexity
From theM adjacencymatrices a↵ of each layer ↵ = 1, 2 . . .M of the network it is possible to construct anN⇥M activity

matrix b of elements bi,↵ indicating if node i is present in layer ↵. This matrix can be seen as an adjacency matrix between
nodes and layers indicating which node is active in each layer of the multiplex. For a undirected multiplex network, node i
is active in layer ↵ if it has a positive degree in layer ↵, i.e. k[↵]

i > 0. Therefore we have
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where �x,y indicates the Kronecker delta. For a directed multiplex network, node i is inactive in layer ↵ if both its in-degree
and its out-degree in layer ↵ are zero. Therefore we can define the matrix elements bi,↵ as
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The activity Bi of a node i has been defined in Ref. [117] and is given by the number of layers in which node i is active:

Bi =

MX

↵=1

bi,↵. (81)

The layer activity N↵ has been defined in Ref. [117] and is given by the number of nodes active in layer ↵:

N↵ =

NX

i=1

bi,↵. (82)

By analyzing a large set of multiplex networks, including a multiplex formed by a very large number of layers, Nicosia
and Latora in Ref. [117] have shown that the activity distribution P(Bi) is typically broad and can be fitted by a power-law
P(Bi) ' B��

i with � 2 [1.5, 3.0]. This implies that for some multiplex networks the bipartite network between nodes and
layers described by the activity adjacency matrix can be either dense (�  2) or sparse (� > 2) but the typical number
of layers in which a node is active is always subject to unbound fluctuations (see Fig. 11). Moreover, in Ref. [117] a broad
distribution P(N↵) of layer activities has been reported.

In Ref. [117] the Authors studied the layer pairwise multiplexity Q↵� measuring the correlation between the layers. The
layer pairwise multiplexity is defined as

Q↵� =
1
N

NX

i=1

bi,↵bi,� , (83)
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FIG. 6: (color online) The pairwise multiplexity has a power-law behavior in (a) airline networks, while it is exponential in
(b) APS and IMDb. In panel (c) we report a graph of the first 20 airlines in Europe by number of covered airports. Each
node of this graph represents a layer of the original multiplex network, while the weight of the edge connecting two nodes is
proportional to the fraction of nodes present in both layers. The size of a node is proportional to the number of airports in
which the corresponding company operates, while the color (from yellow to red) corresponds to the node strength, which in
this case is proportional to the total node overlap with other airlines.

FIG. 7: (color online) The distribution of the normalised
Hamming distance H↵,� between all the possible pairs of lay-
ers on various multiplex networks. Notice that P (H) increases
exponentially for the continental airlines networks.

when all the active nodes at layer ↵ are not active at
layer �. In Fig. 7 we report the distributions of H↵,�

for the continental airlines, for APS and for IMDb. In
all the networks considered the measured values of H↵,�

are distributed throughout the whole [0, 1] range. How-
ever, in the continental networks the distributions have
an increasing exponential behaviour, meaning that the
normalised Hamming distance is quite large for the vast
majority of layer pairs, in accordance with the obser-
vation that airports generally have small node-activity
(Fig. 5(a)). Conversely, for APS and IMDb the distribu-

tions are more homogeneous. It is interesting to notice
that in all the systems around 1% of the layer pairs have
a normalised distance smaller than 0.05, corresponding
to large overlaps of node activity.

IV. MODELS OF NODE AND LAYER
ACTIVITY

The empirical results of Section III suggest that the
patterns of node and layer activity in real-world multi-
plex networks can be quite heterogeneous. In general,
real-world multiplex systems tend to be quite sparse,
meaning that the majority of nodes participate to only a
small subset of all the layers, and given two layers only
a small fraction of their nodes are active on both. It is
therefore natural to ask whether similar patterns might
naturallly arise from a random distribution of node ac-
tivity across layers or not. Or, in other words, if there is
anything special at all in the power-law distributions of
node-activity, node-activity vectors, and layer activity,
and if the observed behaviour of multiplexity and nor-
malised Hamming distance among layers can be just the
result of the juxtaposition of independent layers. We pro-
pose here four di↵erent multiplex network models and we
compare the correlations in node and layer activity ob-
served in real-world multiplexes with those produced by
those models. The first three models are null-models to
assess the significance of the heterogeneity of the distri-
butions P (N [↵]), P (Bi) and P (bi). The fourth model
is instead a generative model which proposes a possi-
ble explanation for the observed distributions of pairwise
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The interactions among the elementary components of many complex systems can be qualitatively
di↵erent. Such systems are therefore naturally described in terms of multiplex or multi-layer net-
works, i.e. networks where each layer stands for a di↵erent type of interaction between the same set
of nodes. There is today a growing interest in understanding when and why a description in terms
of a multiplex network is necessary and more informative than a single-layer projection. Here, we
contribute to this debate by presenting a comprehensive study of correlations in multiplex networks.
Correlations in node properties, especially degree-degree correlations, have been thoroughly studied
in single-layer networks. Here we extend this idea to investigate and characterize correlations be-
tween the di↵erent layers of a multiplex network. Such correlations are intrinsically multiplex, and
we first study them empirically by constructing and analyzing several multiplex networks from the
real-world. In particular, we introduce various measures to characterize correlations in the activity
of the nodes and in their degree at the di↵erent layers, and between activities and degrees. We
show that real-world networks exhibit indeed non-trivial multiplex correlations. For instance, we
find cases where two layers of the same multiplex network are positively correlated in terms of node
degrees, while other two layers are negatively correlated. We then focus on constructing synthetic
multiplex networks, proposing a series of models to reproduce the correlations observed empirically
and/or to assess their relevance.
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I. INTRODUCTION

Since its origins, the new science of complex networks
has been primarily driven by the need to characterize the
properties of real-world systems [1, 2]. The introduction
of new ideas and concepts in the field has been very often
associated to the availability of new, more accurate, or
larger data sets, and to the discovery of new structural
properties of complex systems from the real world [3–12].
This is the reason why a lot of interest has been recently
devoted to the study of multiplex networks, i.e. networks
in which the same set of nodes can be connected by means
of links of qualitatively di↵erent type or nature.

Several data sets of real-world systems that can be
represented and studied as multiplex networks have ap-
peared in the recent literature [13–16], and we expect
that many more will arrive in the next few years. The
first papers on the subject have focused on the characteri-
zation of the structure of multiplex networks [16–28], and
on modeling the basic mechanisms of their growth [29–
33]. In parallel to this, some e↵ort has been also devoted
on investigating various kinds of dynamical processes
on multiplex topologies, including di↵usion [34–38], epi-
demic spreading [39–44], cooperation [45–48], opinion
formation [49–52], and percolation [46, 53–56].

There is today a general agreement on the fact that
multiplex networks represent the ideal framework to
study a large variety of complex systems of di↵erent na-
ture. And there are already some numerical and analyt-
ical results showing that the dynamics of processes on
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multiplex networks is far richer than in networks with
a single layer. A comprehensive review of the main ad-
vances in this new vibrant field of research can be found
in a few recent survey papers [57–59].

In this Article we focus on an issue that has revealed
of great importance in single-layer networks, but has not
yet been investigated thoroughly in multiplex networks,
i.e. that of correlations [31, 46, 60, 61]. In networks with
a single layer it has been found that there are correlations
in the properties of connected nodes. Namely, the degree
of a node can be either positively or negatively correlated
with the degree of its first neighbors. In the first case,
the hubs of the networks are preferentially linked to each
others, while in the second case they are preferentially
connected to low-degree nodes [6, 11].

In multiplex networks the very same concept of cor-
relations is far richer than in a network with a single
layer. In fact, on one hand it is still possible to explore
the standard degree-degree correlations at the level of
each layer of the network, but on the other hand it is
more interesting to introduce a truly multiplex definition
of correlations, for instance by looking at how a certain
property of a node at a given layer is correlated to the
same or other properties of the same node at another
layer. We present here a complete and self-consistent
study of correlations of node properties in multiplex net-
works. In doing this, we follow the usual steps of the
typical approach to complex networks: i) we first explore
empirically correlations in real multiplex networks, ii) we
introduce various measures to characterize and quantify
correlations in multiplex networks, iii) we propose a se-
ries of models to reproduce the correlations found in real
multiplex systems, or to assess their relevance.

We find that multiplexity introduces novel levels of
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ" 1

2
h qð Þþ h rð Þ½ ): ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
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ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1
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that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
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ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:
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By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ" 1

2
h qð Þþ h rð Þ½ ): ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
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which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
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ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:
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By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
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closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ" 1

2
h qð Þþ h rð Þ½ ): ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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Von Neumann entropy

separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
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where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
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DKL qj ljð Þþ 1
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By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each

Distance matrix

Fruit, dried
Nuts, prepared

Roots and tubers

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Roots and tubers

Nuts, prepared

Fruit, dried nes

Fr
uit

, d
rie

d

Nuts
, p

re
pa

re
d

Roo
ts 

an
d t

ub
er

s

Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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Kullback-Leibler divergence

separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ" 1

2
h qð Þþ h rð Þ½ ): ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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Jensen-Shannon divergence

separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
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ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
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2
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By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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Network science has shown that characterizing the stucture
of a complex system is fundamental when it comes to
understanding its dynamical properties1–3. In particular,

the basic units of most real-world systems are subject to different
types of interactions occurring at comparable time scales. For
instance, this is the case of social systems, where individuals can
have political or financial relationships4, or can be interacting
using different communication channels, including face-to-face
interactions, e-mail, Twitter, Facebook, phone calls and so on5,6.
Similarly, in biological systems basic constituents such as proteins
can have physical, co-localization, genetic or many other types of
interactions. Recently, it has been shown that retaining such
multi-dimensional information7 and modelling the structure of
interdependent and multilayer systems respectively through
interdependent8 and multilayer networks9–12 reveals new non-
trivial structural properties13–20 and relevant emergent physical
phenomena21–27.

However, some of the interaction layers considered in the
multidimensional representation of a system can be redundant or
uninformative. Then, a simple question arises about the
possibility of reducing the structure of a multilayer network, that
is, of considering a smaller number of layers, while retaining as
much information as possible about the whole system. This
problem has both theoretical and practical implications. From a
theoretical point of view, it is always desirable to find the most
economical description of a phenomenon, that is, the one which
retains all the salient aspects of the system avoiding unnecessary
redundancy. From a practical point of view, the computation
of even basic structural descriptors for interdependent and
multilayer networks, such as clustering coefficient, centrality,
motifs abundance and all the measures based on paths and walks,
scales superlinearly or even exponentially with the number of
layers17 and can thus result unfeasible already for medium-sized
networks. Therefore, finding an optimal configuration consisting
of a minimal number of layers becomes a fundamental
requirement when dealing with real-world systems.

Inspired by a similar question arising in quantum physics
when one needs to quantify the distance between mixed
quantum states28, we propose here a method to aggregate some
of the layers of a multilayer system while maximizing its
distinguishability from the aggregated network. The method is
based on a purely information theoretic perspective, which
makes use of the definition of Von Neumann entropy of a
graph. We test our procedure on synthetic and real-world
multilayer networks, showing that different levels of structural
reduction are possible, depending on the overall organization of
the network.

Results
Von Neumann entropy of a multilayer network. In quantum
mechanics, there are pure states, describing the system by
means of a single vector in the Hilbert space, and mixed states,
corresponding to statistical ensembles of pure states. The most
general quantum system can then be described by the so-called
density operator q, a semidefinite positive matrix with
eigenvalues summing up to 1, which encodes all the information
about the statistical ensemble of pure states of the system29. The
Von Neumann (entanglement) entropy, which is the natural
extension of the Shannon information entropy to quantum
operators, is a widely adopted descriptor to measure the
mixedness of a quantum system, although other measures,
satisfying extensivity or non-extensivity, have been lately
introduced and studied30. The Von Neumann entropy is
defined for any density operator q. In particular, if the Von
Neumann entropy is zero the system is in a pure state, otherwise

it is in a mixed state. In general, the larger the Von Neumann
entropy, the more mixed the state is.

It has been recently shown that the Von Neumann entropy can
also be used to characterize (single layer) graphs31,32. Given a
graph G represented by the adjacency matrix A, the Von
Neumann entropy of G is defined as the Shannon entropy of the
spectrum of the rescaled combinatorial Laplacian LG associated
to G (see Methods). This entropy has been interpreted as the
entanglement of the statistical ensemble of pure states where each
pure state is one of the edges of the graph33. According to this
interpretation, a graph is in a pure state if and only if it consists of
exactly one edge, corresponding to a Von Neumann entropy
hA¼ 0, and is in a mixed state otherwise, yielding hA40.

Here we use a similar formalism to characterize multilayer
networks, where we assume that each layer represents one
possible state of the system, that is, a network state. We propose
to use the Von Neumann entropy to quantify the distinguish-
ability between a multilayer network (or a reduced configuration
of its original layers) and the network obtained by aggregating all
its layers in a single-layer graph.

Let us consider a multilayer network with the N nodes
replicated along the different layers12. Such a network can be
represented by the set A ¼ A 1½ #;A 2½ #; . . . ;AM½ #! "

, whose
elements are the N$N adjacency matrices of the M layers11,17.
This particular multilayer structure is known as multiplex in the
literature12. We define the Von Neumann entropy H Að Þ of a
multilayer network as the sum of the Von Neumann entropies
of its M layers, that is, H Að Þ ¼

PM
a¼1 hA a½ # where h

A a½ # ¼
'

PN
i¼1 l

a½ #
i log2ðl

a½ #
i Þ and l a½ #

i are the eigenvalues of the
rescaled Laplacian matrix associated to the adjacency matrix
A[a] of layer a (see Methods). In the case of more general
multilayer networks, where more complicated patterns of
interlayer connections are allowed, it is still possible to calculate
the Von Neumann entropy by considering the supra-adjacency
matrix introduced by Gomez et al.21, obtained as a special
flattening of the rank-4 adjacency tensor, an even more general
representation of multilayer networks10.

Quantifying the reducibility of a multilayer network. The
Von Neumann entropy of a multilayer network A ¼
A 1½ #;A 2½ #; . . . ;AM½ #! "

explicitly depends on the actual number of
layers M and on the structure of each layer, so that in general its
value will change if we consider a reduced multilayer network in
which some of the layers of the original system have been com-
bined together by means of an appropriate aggregation method. A
particular case is represented by the aggregated graph associated
to A, which is the one-layer network whose adjacency matrix
A is obtained by summing the adjacency matrices of all the
M layers of A, that is, A¼A[1]þA[2]þyþA[M]. The Von
Neumann entropy of the aggregated graph is hA. In general, if we
start from an M layer multiplex network A ¼ A 1½ #; . . . ;AM½ #! "

and aggregate some of the original layers of A, we obtain a
reduced multilayer network C ¼ C 1½ #;C 2½ #; . . . ;C X½ #! "

with
XrM layers, where the adjacency matrix C[a], where a¼ 1,y, X
is either one of the adjacency matrices of the original layers of A
or the sum of two or more of them. We then consider the entropy
per layer of the multilayer network C:

!H Cð Þ ¼ H Cð Þ
X

¼
PX

a¼1 hC a½ #

X
ð1Þ

and we propose to quantify the distinguishability between the
multilayer network C and the corresponding aggregated graph A
through the relative entropy:

q Cð Þ ¼ 1'
!H Cð Þ
hA

ð2Þ
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Network science has shown that characterizing the stucture
of a complex system is fundamental when it comes to
understanding its dynamical properties1–3. In particular,
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can have physical, co-localization, genetic or many other types of
interactions. Recently, it has been shown that retaining such
multi-dimensional information7 and modelling the structure of
interdependent and multilayer systems respectively through
interdependent8 and multilayer networks9–12 reveals new non-
trivial structural properties13–20 and relevant emergent physical
phenomena21–27.

However, some of the interaction layers considered in the
multidimensional representation of a system can be redundant or
uninformative. Then, a simple question arises about the
possibility of reducing the structure of a multilayer network, that
is, of considering a smaller number of layers, while retaining as
much information as possible about the whole system. This
problem has both theoretical and practical implications. From a
theoretical point of view, it is always desirable to find the most
economical description of a phenomenon, that is, the one which
retains all the salient aspects of the system avoiding unnecessary
redundancy. From a practical point of view, the computation
of even basic structural descriptors for interdependent and
multilayer networks, such as clustering coefficient, centrality,
motifs abundance and all the measures based on paths and walks,
scales superlinearly or even exponentially with the number of
layers17 and can thus result unfeasible already for medium-sized
networks. Therefore, finding an optimal configuration consisting
of a minimal number of layers becomes a fundamental
requirement when dealing with real-world systems.

Inspired by a similar question arising in quantum physics
when one needs to quantify the distance between mixed
quantum states28, we propose here a method to aggregate some
of the layers of a multilayer system while maximizing its
distinguishability from the aggregated network. The method is
based on a purely information theoretic perspective, which
makes use of the definition of Von Neumann entropy of a
graph. We test our procedure on synthetic and real-world
multilayer networks, showing that different levels of structural
reduction are possible, depending on the overall organization of
the network.

Results
Von Neumann entropy of a multilayer network. In quantum
mechanics, there are pure states, describing the system by
means of a single vector in the Hilbert space, and mixed states,
corresponding to statistical ensembles of pure states. The most
general quantum system can then be described by the so-called
density operator q, a semidefinite positive matrix with
eigenvalues summing up to 1, which encodes all the information
about the statistical ensemble of pure states of the system29. The
Von Neumann (entanglement) entropy, which is the natural
extension of the Shannon information entropy to quantum
operators, is a widely adopted descriptor to measure the
mixedness of a quantum system, although other measures,
satisfying extensivity or non-extensivity, have been lately
introduced and studied30. The Von Neumann entropy is
defined for any density operator q. In particular, if the Von
Neumann entropy is zero the system is in a pure state, otherwise

it is in a mixed state. In general, the larger the Von Neumann
entropy, the more mixed the state is.

It has been recently shown that the Von Neumann entropy can
also be used to characterize (single layer) graphs31,32. Given a
graph G represented by the adjacency matrix A, the Von
Neumann entropy of G is defined as the Shannon entropy of the
spectrum of the rescaled combinatorial Laplacian LG associated
to G (see Methods). This entropy has been interpreted as the
entanglement of the statistical ensemble of pure states where each
pure state is one of the edges of the graph33. According to this
interpretation, a graph is in a pure state if and only if it consists of
exactly one edge, corresponding to a Von Neumann entropy
hA¼ 0, and is in a mixed state otherwise, yielding hA40.

Here we use a similar formalism to characterize multilayer
networks, where we assume that each layer represents one
possible state of the system, that is, a network state. We propose
to use the Von Neumann entropy to quantify the distinguish-
ability between a multilayer network (or a reduced configuration
of its original layers) and the network obtained by aggregating all
its layers in a single-layer graph.

Let us consider a multilayer network with the N nodes
replicated along the different layers12. Such a network can be
represented by the set A ¼ A 1½ #;A 2½ #; . . . ;AM½ #! "

, whose
elements are the N$N adjacency matrices of the M layers11,17.
This particular multilayer structure is known as multiplex in the
literature12. We define the Von Neumann entropy H Að Þ of a
multilayer network as the sum of the Von Neumann entropies
of its M layers, that is, H Að Þ ¼
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a¼1 hA a½ # where h
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i are the eigenvalues of the
rescaled Laplacian matrix associated to the adjacency matrix
A[a] of layer a (see Methods). In the case of more general
multilayer networks, where more complicated patterns of
interlayer connections are allowed, it is still possible to calculate
the Von Neumann entropy by considering the supra-adjacency
matrix introduced by Gomez et al.21, obtained as a special
flattening of the rank-4 adjacency tensor, an even more general
representation of multilayer networks10.

Quantifying the reducibility of a multilayer network. The
Von Neumann entropy of a multilayer network A ¼
A 1½ #;A 2½ #; . . . ;AM½ #! "

explicitly depends on the actual number of
layers M and on the structure of each layer, so that in general its
value will change if we consider a reduced multilayer network in
which some of the layers of the original system have been com-
bined together by means of an appropriate aggregation method. A
particular case is represented by the aggregated graph associated
to A, which is the one-layer network whose adjacency matrix
A is obtained by summing the adjacency matrices of all the
M layers of A, that is, A¼A[1]þA[2]þyþA[M]. The Von
Neumann entropy of the aggregated graph is hA. In general, if we
start from an M layer multiplex network A ¼ A 1½ #; . . . ;AM½ #! "

and aggregate some of the original layers of A, we obtain a
reduced multilayer network C ¼ C 1½ #;C 2½ #; . . . ;C X½ #! "

with
XrM layers, where the adjacency matrix C[a], where a¼ 1,y, X
is either one of the adjacency matrices of the original layers of A
or the sum of two or more of them. We then consider the entropy
per layer of the multilayer network C:

!H Cð Þ ¼ H Cð Þ
X

¼
PX

a¼1 hC a½ #

X
ð1Þ

and we propose to quantify the distinguishability between the
multilayer network C and the corresponding aggregated graph A
through the relative entropy:

q Cð Þ ¼ 1'
!H Cð Þ
hA

ð2Þ

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7864

2 NATURE COMMUNICATIONS | 6:6864 | DOI: 10.1038/ncomms7864 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

Entropy

Aggregated 


graph

The larger q Cð Þ, the more distinguishable is the multilayer net-
work C from the corresponding aggregated graph A. It is worth
noting that if all the layers of the multilayer network C are
identical, then q Cð Þ ¼ 0, as C and the aggregated graph are totally
equivalent. Conversely, a value q Cð Þ40 indicates that the repre-
sentation with X layers is distinguishable from the aggregated
one; hence the multilayer structure must be preserved. Intuitively,
if the aggregation of two layers does not result in a decrease of the
relative entropy with respect to the multiplex in which the two
layers are kept separated, then one would prefer the reduced
configuration, which is more compact. However, it is possible to
show (see Methods) that if we consider a multilayer C with X
layers and the reduced configuration C0 with X–1 layers obtained
from C by aggregating two of its layers, then in general q C0ð Þ can
be smaller than, equal to, or even larger than q Cð Þ. This is due to
the fact that the entropy per layer !H Cð Þ can either increase or
decrease as a consequence of the aggregation of two layers (see
Supplementary Fig. 1 and Supplementary Table 1). As we show in
detail in Methods, our goal is to find argmax q Cð Þ½ %, that is, the
optimally reduced multiplex Cmax yielding the maximum value of
distinguishability from the aggregated graph. If we denote byMopt
the number of layers corresponding to the maximum value of
relative entropy max[q(&)], we can then define the reducibility of
a multilayer network A as:

w Að Þ ¼ M'Mopt

M' 1
; ð3Þ

which is the ratio between the number of reductions (M–Mopt)
and the total possible number of potentially reducible layers
(M–1). It is worth noting that w Að Þ ¼ 0 if the system cannot be
reduced, that is, whenMopt¼M, while w Að Þ ¼ 1 only ifMopt¼ 1,
that is, if the M layers can indeed be reduced into a single one
(that is, the aggregated network).

The optimal configuration of aggregated layers is the one that
maximizes the relative entropy q(&), but finding such a
configuration would in general require the enumeration of all
the possible partitions of a set of M objects (the layers), which is a
well-known NP-hard problem (that is, its solution requires a
computational time that scales at least exponentially with M). To
overcome this problem, we adopt a greedy agglomerative
hierarchical clustering algorithm34 to explore the space of
partitions, based on a concept of distance similar to the one
adopted in quantum physics to quantify the distance between
mixed quantum states28. More specifically, capitalizing on the
concept of Von Neumann entropy of a graph, we use the
quantum Jensen–Shannon divergence to quantify the (dis-)
similarity between all pairs of layers of a multilayer network
(see Methods). At each step of the algorithm, we consider the pair
of layers having the smallest value of quantum Jensen–Shannon
divergence and we aggregate them, obtaining a new multilayer
network with one layer less. The rationale behind this choice is
that the aggregation of a pair of similar layers is more desirable
than the aggregation of two very dissimilar layers, as the latter can
introduce artificial structural patterns. The result of this
procedure is a dendrogram (see Fig. 1), that is, a hierarchical
diagram where each of the M leaves is associated to one of the
original layers of the system, each internal node indicates the
aggregation of layers (or of clusters of layers) together and the
root corresponds to the fully aggregated graph. At the mth step of
the algorithm, we obtain a multilayer with M–m layers, for which
we can compute the associated value of relative entropy q(&). The
cut of the dendrogram corresponding to the maximal value of
q(&) identifies the (sub-)optimal configuration of layers in terms
of distinguishability with respect to the aggregated graph. The
whole procedure proposed is sketched in Fig. 1 and can be
summarized as follows: (i) compute the quantum Jensen–
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Figure 1 | Layer aggregation and structural reducibility of multilayer networks. Given a multilayer network (a), we compute the Jensen–Shannon
distance DJS between each pair of its layers (b), which is a proxy for layer redundancy. Such resulting distance matrix allows to perform a hierarchical
clustering, whose output is a hierarchical diagram (a dendrogram) whose leaves represent the initial layers and internal nodes denote layer merging (c). At
each step, the two clustered layers (or group of layers) corresponding to the smallest value of DJS are aggregated and the quality of the new layer
configuration in terms of distinguishability from the aggregated graph is quantified by the global quality function q(&), shown by the curve on the left-hand
side of c. The best partition is the one for which q(&) is maximal (d).
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Reduction

The larger q Cð Þ, the more distinguishable is the multilayer net-
work C from the corresponding aggregated graph A. It is worth
noting that if all the layers of the multilayer network C are
identical, then q Cð Þ ¼ 0, as C and the aggregated graph are totally
equivalent. Conversely, a value q Cð Þ40 indicates that the repre-
sentation with X layers is distinguishable from the aggregated
one; hence the multilayer structure must be preserved. Intuitively,
if the aggregation of two layers does not result in a decrease of the
relative entropy with respect to the multiplex in which the two
layers are kept separated, then one would prefer the reduced
configuration, which is more compact. However, it is possible to
show (see Methods) that if we consider a multilayer C with X
layers and the reduced configuration C0 with X–1 layers obtained
from C by aggregating two of its layers, then in general q C0ð Þ can
be smaller than, equal to, or even larger than q Cð Þ. This is due to
the fact that the entropy per layer !H Cð Þ can either increase or
decrease as a consequence of the aggregation of two layers (see
Supplementary Fig. 1 and Supplementary Table 1). As we show in
detail in Methods, our goal is to find argmax q Cð Þ½ %, that is, the
optimally reduced multiplex Cmax yielding the maximum value of
distinguishability from the aggregated graph. If we denote byMopt
the number of layers corresponding to the maximum value of
relative entropy max[q(&)], we can then define the reducibility of
a multilayer network A as:

w Að Þ ¼ M'Mopt

M' 1
; ð3Þ

which is the ratio between the number of reductions (M–Mopt)
and the total possible number of potentially reducible layers
(M–1). It is worth noting that w Að Þ ¼ 0 if the system cannot be
reduced, that is, whenMopt¼M, while w Að Þ ¼ 1 only ifMopt¼ 1,
that is, if the M layers can indeed be reduced into a single one
(that is, the aggregated network).

The optimal configuration of aggregated layers is the one that
maximizes the relative entropy q(&), but finding such a
configuration would in general require the enumeration of all
the possible partitions of a set of M objects (the layers), which is a
well-known NP-hard problem (that is, its solution requires a
computational time that scales at least exponentially with M). To
overcome this problem, we adopt a greedy agglomerative
hierarchical clustering algorithm34 to explore the space of
partitions, based on a concept of distance similar to the one
adopted in quantum physics to quantify the distance between
mixed quantum states28. More specifically, capitalizing on the
concept of Von Neumann entropy of a graph, we use the
quantum Jensen–Shannon divergence to quantify the (dis-)
similarity between all pairs of layers of a multilayer network
(see Methods). At each step of the algorithm, we consider the pair
of layers having the smallest value of quantum Jensen–Shannon
divergence and we aggregate them, obtaining a new multilayer
network with one layer less. The rationale behind this choice is
that the aggregation of a pair of similar layers is more desirable
than the aggregation of two very dissimilar layers, as the latter can
introduce artificial structural patterns. The result of this
procedure is a dendrogram (see Fig. 1), that is, a hierarchical
diagram where each of the M leaves is associated to one of the
original layers of the system, each internal node indicates the
aggregation of layers (or of clusters of layers) together and the
root corresponds to the fully aggregated graph. At the mth step of
the algorithm, we obtain a multilayer with M–m layers, for which
we can compute the associated value of relative entropy q(&). The
cut of the dendrogram corresponding to the maximal value of
q(&) identifies the (sub-)optimal configuration of layers in terms
of distinguishability with respect to the aggregated graph. The
whole procedure proposed is sketched in Fig. 1 and can be
summarized as follows: (i) compute the quantum Jensen–
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Figure 1 | Layer aggregation and structural reducibility of multilayer networks. Given a multilayer network (a), we compute the Jensen–Shannon
distance DJS between each pair of its layers (b), which is a proxy for layer redundancy. Such resulting distance matrix allows to perform a hierarchical
clustering, whose output is a hierarchical diagram (a dendrogram) whose leaves represent the initial layers and internal nodes denote layer merging (c). At
each step, the two clustered layers (or group of layers) corresponding to the smallest value of DJS are aggregated and the quality of the new layer
configuration in terms of distinguishability from the aggregated graph is quantified by the global quality function q(&), shown by the curve on the left-hand
side of c. The best partition is the one for which q(&) is maximal (d).
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Many complex systems can be represented as networks consisting of distinct types of

interactions, which can be categorized as links belonging to different layers. For example, a

good description of the full protein–protein interactome requires, for some organisms, up to

seven distinct network layers, accounting for different genetic and physical interactions, each

containing thousands of protein–protein relationships. A fundamental open question is then

how many layers are indeed necessary to accurately represent the structure of a multilayered

complex system. Here we introduce a method based on quantum theory to reduce the

number of layers to a minimum while maximizing the distinguishability between the multi-

layer network and the corresponding aggregated graph. We validate our approach on

synthetic benchmarks and we show that the number of informative layers in some real

multilayer networks of protein–genetic interactions, social, economical and transportation

systems can be reduced by up to 75%.
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In Fig. 4 we summarize the results obtained by applying the
proposed layer aggregation procedure to all the 13 multilayer
genetic interaction networks of the BioGRID data set. This
particular visualization allows to compare the structural reduci-
bility of all organisms simultaneously. Not all multilayer networks
can be reduced to a smaller number of layers, suggesting that for
some organisms layer aggregation should be avoided. For
instance, this is the case of C. elegans (nematode), Arabidopsis
thaliana (cress) and Bos taurus (mammal), where no global
maximum is present, except for m¼ 0, that is, the initial
multilayer in which all layers are kept distinct. In other
cases, some of the layers are clearly redundant, as happens for

instance in Saccharomyces cerevisiae (yeast) and Drosophila
melanogaster (common fruit fly), where a maximum of q(") is
present at m¼ 2.

Note that the reducibility values obtained for the above
mentioned biological networks are conditioned to the complete-
ness of the corresponding data sets. As a matter of fact, although
the protein interactions of some organisms are well known and
thoroughly characterized as in the case of S. cerevisiae or D.
melanogaster, for some other organisms the information is only
partial or incomplete. Hence, we cannot estimate a priori how the
partial information contained in these networks is indeed
affecting the values of reducibility that we observe.
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Figure 3 | Layer aggregation of protein–genetic interaction networks. The multilayer protein–genetic networks of different species have different levels of
reducibility. We show the heat map of the Jensen–Shannon divergence, together with the dendrogram resulting from hierarchical clustering and the
corresponding values of q("), in 3 of the 13 species considered in this study. The dashed red lines identify the maximum of the global quality function q(").
For some organisms (such as C. elegans, reported in a), such maximum is obtained by leaving all the layers separate and no aggregation is possible,
whereas for some other species a few layers carry redundant information, for example, in (b) Mus and in (c) Candida.
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Multilayer Networks
Reducibility

Discussion
Nowadays, larger and more detailed data sets describing diverse
natural and man-made systems are being produced at an
increasingly fast rate. This data deluge has provided an
unprecedented amount of information about social, biological

and technological phenomena, allowing a better characterization
of the structure of different complex systems and a more in-depth
understanding of the mechanisms underpinning their function-
ing. On the one hand, multilayer networks represent a natural
framework to properly take into account all the different kinds of
relationships connecting the units of a system, in a coherent
manner. On the other hand, dealing with multilayer graphs
introduces new computational challenges, which might limit the
applicability of the multilayer approach to large systems. As a
matter of fact, the evaluation of the multilayer version of even the
most basic network descriptors, such as average shortest path
length, node clustering coefficient, node betweenness and
network motifs, tend to scale exponentially with the number of
layers of the system and might become too computationally
demanding already for medium-sized systems.

A fundamental observation is that not all the available levels of
interaction among the constituents of a complex system have the
same importance and some of them might be redundant,
irrelevant or uninformative, with respect to the overall structure
of the system. Hence, comes the idea of providing a consistent
way to aggregate some of the layers of a multilayer network
according to their similarity, as measured by the quantum
Jensen–Shannon divergence, and of looking for configurations of
layers that guarantee the maximum possible distinguishability
from the fully aggregated graph and still use a minimal number of
layers. The proposed approach allows to effectively reduce the
redundancy of a multilayer network, as extensively shown in the
paper for the case of the protein–genetic interaction networks of
several different species.

However, the applicability of this method is not limited to
biological systems. As an example, we have applied it also
to social17 and economical systems, coauthorship networks36,
metropolitan transportation networks24 and continental air trans-
portation systems20 (see Table 1). A particularly interesting case
is that of the FAO (Food and Agriculture Organization of the
United Nations) worldwide food import/export network, an
economic network in which layers represent products, nodes are
countries and edges at each layer represent import/export
relationships of a specific food product among countries. We
collected the data from http://www.fao.org and built the
multilayer network corresponding to trading in 2010. In Fig. 5
we show the distance matrix and the network visualization of
three representative layers. The hierarchical clustering procedure
reveals that up to 158 out of the 340 available layers can indeed be
reduced, yielding a value of w close to 50%. Intriguingly, the layers
that are aggregated in the earlier stages of the clustering
procedure correspond to products characterized by similar
import/export patterns, as happens for instance for the layers
associated to nuts, cocoa, dried and prepared fruits, roasted
coffee and coffee-related products, which mainly involve export
from Australia, China and Africa to European countries and the
United States.

Conversely, the number of layers in the multilayer networks of
airline transportation systems cannot be substantially reduced
(the few allowed aggregations correspond to layers associated to
very small companies, operating on just one or two routes), in
agreement with the fact that airline companies tend to minimize
the overlap of routes with other operators, to avoid strong
competition. This result indicates that the connectivity among
airports is practically not redundant for any airline, as expected
for a modern large-scale transport infrastructure. Similar results
are obtained for the London metropolitan transportation net-
work, in which the overlap among different lines is purposely
avoided to guarantee a more efficient coverage of the metropo-
litan area. In this case, the optimal solution corresponds to the
multiplex network in which all the transportation lines are kept

Table 1 | Reducibility of empirical multilayer networks.

Network N M Mopt max[q(!)] v

Arabidopsis 6981 7 5 0.436 0.33
Bos 326 4 3 0.494 0.33
Candida 368 7 4 0.527 0.50
C. elegans 3880 6 4 0.390 0.40
Drosophila 8216 7 5 0.426 0.33
Gallus 314 6 4 0.505 0.40
Human HIV-1 1006 5 2 0.499 0.75
Mus 7748 7 6 0.376 0.17
Plasmodium 1204 3 2 0.500 0.50
Rattus 2641 6 4 0.504 0.40
S. cerevisiae 6571 7 4 0.115 0.50
S. pombe 4093 7 4 0.197 0.50
Xenopus 462 5 3 0.424 0.50
Arxiv coauthorship 14065 13 11 0.231 0.17
Terrorist network 78 4 2 0.239 0.67
FAO Trade network 184 340 182 0.354 0.47
London Tube 369 13 12 0.441 0.08
Airports Europe 1064 175 165 0.667 0.06
Airports Asia 1130 213 202 0.653 0.05
Airports North America 2040 143 136 0.686 0.05

Number of nodes (N), number of layers in the original system (M), number of layers (Mopt)
corresponding to the maximal value of the quality function (max[q(!)]) obtained through the
greedy hierarchical clustering procedure, and the value of the reducibility (w) for several
biological, social, economical and technological multilayer networks. Notice that the structure of
the three continental air networks and of the London metropolitan transportation system cannot
be substantially reduced, in accordance with the fact that in these systems layer redundancy is
purposedly avoided. Conversely, social and biological systems exhibit higher levels of
redundancy and allow for the merging of up to 75% of the layers.

Candida

Arabidopsis

Mus

Drosophila

C. elegans

Gallus
Bos

1 2 4 5 6 73

Hierarchical clustering step, m

Xenopus

Rattus

S. pombe

Plasmodium Human HIV

S. cerevisiae

Figure 4 | Structural reducibility of protein–genetic networks in the
BioGRID data set. The global quality function q(!) versus the number of
merges in the hierarchical clustering procedure for the protein–genetic
interaction multilayer networks of all the 13 organisms considered in this
study (the plots are vertically rescaled to avoid overlaps). The values of q(!)
are not reported in the y axis, because only the existence of a global
maximum, and the corresponding value of m in the x axis is meaningful for
the analysis. For each organism, q(!) has a maximum corresponding to the
partition of the layers which minimizes layer redundancy at the cost of a
small loss of information.
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physical (labelled ‘Phys’ in the following), direct (‘Dir’), co-localization (‘Col’), association 
(‘Ass’) and suppressive (‘GSup’), additive (‘GAdd’) or synthetic genetic (‘GSyn’) interaction. 

separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ "Tr LG log2 LG
! "

ð4Þ

where LG ¼ c% D"Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ "
XN

i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ" log2 rð Þ
# $! "

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL &j &jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ" 1

2
h qð Þþ h rð Þ½ ): ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(*). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(*) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(*) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ );A 2½ ); . . . ;A M½ )& '

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ );C 2½ ); . . . ;C X½ )& '

with XrM layers, where the adjacency matrix of each
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Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food
import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the
topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,
closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,
which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under CC BY SA.
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Multilayer Networks
Resilience: Modelling a blackout in Italy (September 2003) 

Power network 

Internet network



Multilayer Networks
Resilience

S. Boccaletti et al. / Physics Reports 544 (2014) 1–122 39

a b c d

Fig. 19. Schematic description on how to find the mutually connected component in a multilayer interdependent network (duplex) considering the
cascading failures propagating from one layer to the other one as described in Section 4.2. The set of active nodes that remains at the end of the cascade is
the mutually connected component.
Source: Reprinted figure from Ref. [25]. Courtesy of S. Havlin.

resilience under random damage. This might have consequence for the infrastructure design of the new generation, for
reducing risk in financial networks, and for assessing the robustness of the biological networks in the cell. Notice that, while
for random interdependent networks percolation is clearly sharpened by the presence of interdependencies, the question
weather interdependencies always sharpen the percolation transition has been matter of debate [165–167].

4.2. Percolation in interdependent networks

After the pioneering and seminal work of Ref. [25], it became clear that, in presence of interdependencies, the robustness
of multilayer networks can be evaluated by calculating the size of their mutually connected giant component (MCGC) when
a random damage affects a fraction 1 � p of the nodes in the system. The MCGC of a multilayer network is the largest
component that remains after the random damage propagates back and forth in the different layers.

In Fig. 19, it is shown how to construct the MCGC for the case of a multiplex formed by two layers (layer A and layer
B) where the replica nodes are interdependent. Assume that a group of nodes in layer A is damaged, all the nodes in the
giant component of layer A are active while the nodes that are not in the giant component are not active. Then consider
the layer B. All the nodes of layer B that are interdependent with nodes that are not active in layer A, are damaged. Next,
set as active all the nodes that remain in the giant component of layer B, and set as not active all the nodes that are not in
the giant component. By repeating the algorithm alternating the analysis of layer A and layer B, it is possible to characterize
an avalanche of failure events that propagates from one layer to the other one, until the avalanche does not propagate any
more. The set of active nodes that remains at the end of the iteration is the MCGC. Between any two nodes in this mutually
connected component there are at least two paths, one in one layer A and one in layer B, that connect the two nodes and
that pass only through nodes that belong to the mutually connected component. In this case, the MCGC is also called the
viable cluster of the network [168].

The size of the MCGC of a multilayer network emerges discontinuously at a critical value p = pc , at least in the case
of random networks in which there is no overlap of the links in the different layers and every node is interdependent at
least on another node in another layer. This is in contrast with the theory of percolation in single-layer networks, where
the giant component emerges continuously at a second order phase transition. Moreover, if one approaches the value
p = pc , the interdependent networks are affected by cascading failures that propagate throughout the structure. Otherworks
have extended the original formalism to network of networks [26,153,156], network with partial interdependencies [35]
with multiple dependencies links [169] and exploring the effect of targeted attack [170]. Subsequent studies on the
subject have been carried out by Son et al. [171]. The Authors call this algorithm an ‘‘epidemic spreading’’ process, but
the algorithm can be more suitably termed as the ‘‘message passing algorithm’’ for this generalized percolation problem
[172–174]. Here we will try to present all this material in a pedagogical way, starting from a generalization of the algorithm
of Ref. [171] that can be used both for multiplex and for networks of networks.

4.2.1. The mutually connected giant component of a multilayer network
In this subsection, we will consider a special type of a multilayer network formed by M layers ↵ = 1, 2, . . . ,M , each

one formed by interactions between N nodes i = 1, 2, . . . ,N . Every node will be indicated by the pair (i, ↵), which denotes
the label i of the nodes in the specific layer ↵. We furthermore call all the nodes (i, ↵) characterized by the same label i
but belonging to different layers ↵ the ‘‘replica nodes’’. Every node (i, ↵) can be connected to nodes (j, ↵) within the same
layer with ‘‘connectivity links’’, or with its ‘‘replica nodes’’ (i, �) in other layers with ‘‘interdependency links’’. In Ref. [169],
it is further allowed to one node in layer ↵ to be interdependent to more than one node in a given layer � , but here (if not
explicitly otherwise stated) we make the simplifying assumption that every node in layer ↵ can be interdependent at most
to a node in layer � , i.e. on its ‘‘replica node’’. This framework allows to treat at the same time, multiplex networks and

Nodes are layers can be interdependent: failure in one induces failure in the other

find the mutually connected components
in presence of interdependencies, the robustness of multilayer networks can be 

evaluated by calculating the size of their mutually connected giant component (MCGC) New result:
Multilayer SF are less resilient!



Code
https://github.com/nkoub/multinetx

https://github.com/bolozna/Multilayer-networks-library
https://github.com/manlius/muxViz

https://github.com/nkoub/multinetx
https://github.com/bolozna/Multilayer-networks-library
https://github.com/manlius/muxViz


Networks with higher-order 
(group) interactions

Hypergraphs and simplicial complexes



(Pairwise) networks are great



But they don’t encode group interactions

�

? ?



Going beyond pairwise
Examples

• Co-authorship


• Chemical reactions


• Social interactions


• Etc. �

Three 2-author papers One 3-author paper



Two possible representations
Hypergraphs    Simplicial complexes    

Definition: (V, E) set of nodes V and hyper edges E


A hyper edge is a set of any number of nodes e.g. {1, 2, 3}

Special case of hyper graphs with one extra condition:

All subfaces must be included



Building blocks

Network

Simplicial complex

Hypergraph

(Hyperlink = hyper edge)

“Order” of interaction = size - 1



Link with other types networks
Bipartite, motifs, and multilayers

“Multilayer”



Matrix 
Representations

I_iα in row i and column α is 1 if node i and 

edge α are incident, and zero otherwise



Measures

• Degree 


• Walks 



Current research

• Models and phenomenology (sync, contagion, etc)


• Reducibility?


• Information theory: new scales?


• Coupling functions


• XGI


• …



Before showing you: 
some synchronization



Synchronization
Story time: Christiaan Huygens (XVII)


noticed that two mechanical clocks when attached to a beam synchronize the movement of their pendula.



Experiment with metronomes

What is needed for sync?

https://www.youtube.com/watch?v=Aaxw4zbULMs


Sync everywhere in nature
Metronomes can by any oscillator or rhythms

Examples:


- neurons firing


- Circadian rhythms


- fireflies flashing

Refs: 

“Sync: The Emerging Science of Spontaneous Order” by Steven Strogatz


“Synchronization: A Universal Concept in Nonlinear Sciences” by Pikovsky, Rosenblum, and Kurths



Simplest oscillator: just a phase

·θ = ω
has a constant frequency. 


Best visualized in the x-y-plane as a dot the moves around in a circle at constant speed.



Minimal case for sync: 2 oscillators
·θ1 = ω1 +

γ
2

sin(θ2 − θ1)

·θ2 = ω2 +
γ
2

sin(θ1 − θ2)

Natural frequencies w1 and w2

Coupling strength \gamma

Condition for sync: constant phase diff

ψ = θ2 − θ1

We define the phase difference

·ψ = Δω − γ sin(ψ)

Which evolves as 

Δω = ω2 − ω1With the frequency mismatch



Condition for sync: fixed points
·ψ = Δω − γ sin(ψ) ≡ 0

⇒ γ > |Δω |

Condition for sync:  
large coupling strength or small frequency mismatch



Many oscillators: Kuramoto model

·θi = ωi +
γ
N ∑

j

Aij sin(θj − θi)

With the adjacency matrix of the network Aij



Dynamical regimes

Go play at https://www.complexity-explorables.org/explorables/ride-my-kuramotocycle/

https://www.complexity-explorables.org/explorables/ride-my-kuramotocycle/


Measure sync: order parameter
Z = ReiΦ =

1
N ∑

j

eiθj



All-to-all: driving by order parameter

ReiΦe−iθi =
1
N ∑

j

eiθje−iθi

·θi = ωi +
γ
N ∑

j

sin(θj − θi) All-to-all: Aij = 1

Let’s rewrite the second term

By multiplying both sides by e−iθi

·θi = ωi + γR sin(Φ − θi)
By taking the Imaginary part


And plugging into 1st eq.

Looks like the 2-oscillator equation from before! 
Defence on other oscillators j now implicit in R

Each oscillator is driven  
by the phase of the order parameter 

With a strength proportional to R



Back to group interactions and 
current research



Multiorder Laplacian
Extended Kumamoto with group interactions



Multiorder Laplacian
Linearised around sync



Effect on sync
Larger groups sync faster - higher-order stabilise sync



Hypergraphs vs simplicial complexes
They sync differently



Always better sync with triangles?
No



Simplicial Complexes
Rich gets richer



Simplicial contagion
Explosive transition!



Simplicial driven simple contagion
Unidirectional but also explosive

S

A

AB

(a) (b) (c) (d)

(e) (f) (g)



Simplicial driven simple contagion
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Review materials
Structure and dynamics: basics

http://networksciencebook.com/

http://www.apple.com/uk
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Abstract
Complex systems are characterized by many interacting units that give rise to
emergent behavior. A particularly advantageous way to study these systems is
through the analysis of the networks that encode the interactions among the
system constituents. During the past two decades, network science has pro-
vided many insights in natural, social, biological, and technological systems.
However, real systems are often interconnected, with many interdependen-
cies that are not properly captured by single-layer networks. To account
for this source of complexity, a more general framework, in which different
network evolves or interact with each other, is needed. These are known
as multilayer networks. Here, we provide an overview of the basic method-
ology used to describe multilayer systems as well as of some representative
dynamical processes that take place on top of them. We round off the review
with a summary of several applications in diverse fields of science.
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a b s t r a c t

In the past years, network theory has successfully characterized the interaction among
the constituents of a variety of complex systems, ranging from biological to technological,
and social systems. However, up until recently, attention was almost exclusively given to
networks in which all components were treated on equivalent footing, while neglecting all
the extra information about the temporal- or context-related properties of the interactions
under study. Only in the last years, taking advantage of the enhanced resolution in real
data sets, network scientists have directed their interest to the multiplex character of
real-world systems, and explicitly considered the time-varying and multilayer nature
of networks. We offer here a comprehensive review on both structural and dynamical
organization of graphs made of diverse relationships (layers) between its constituents,
and cover several relevant issues, from a full redefinition of the basic structural measures,
to understanding how the multilayer nature of the network affects processes and
dynamics.
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In most natural and engineered systems, a set of entities interact with each other in complicated
patterns that can encompass multiple types of relationships, change in time and include other types of
complications. Such systems include multiple subsystems and layers of connectivity, and it is important
to take such ‘multilayer’ features into account to try to improve our understanding of complex systems.
Consequently, it is necessary to generalize ‘traditional’ network theory by developing (and validating) a
framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of
such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer
networks has become one of the most important directions in network science. In this paper, we discuss
the history of multilayer networks (and related concepts) and review the exploding body of work on
such networks. To unify the disparate terminology in the large body of recent work, we discuss a general
framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing
concepts to each other and provide a thorough discussion that compares, contrasts and translates between
related notions such as multilayer networks, multiplex networks, interdependent networks, networks
of networks and many others. We also survey and discuss existing data sets that can be represented as
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A network representation is useful for describing the structure of a large variety of complex systems.

However, most real and engineered systems have multiple subsystems and layers of connectivity, and the

data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates

generalizing ‘‘traditional’’ network theory, and the newfound deluge of data now makes it possible to test

increasingly general frameworks for the study of networks. In particular, although adjacency matrices are

useful to describe traditional single-layer networks, such a representation is insufficient for the analysis

and description of multiplex and time-dependent networks. One must therefore develop a more general

mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper,

we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of

several important network descriptors and dynamical processes—including degree centrality, clustering

coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework.

We examine the impact of different choices in constructing these generalizations, and we illustrate how to

obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach

will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is

influencing whom (and by which media) in multichannel social networks and developing routing

techniques for multimodal transportation systems.

DOI: 10.1103/PhysRevX.3.041022 Subject Areas: Interdisciplinary Physics

I. INTRODUCTION

The quantitative study of networks is fundamental for the
study of complex systems throughout the biological, social,
information, engineering, and physical sciences [1–3]. The
broad applicability of networks and their success in providing
insights into the structure and function of both natural and
designed systems have thus generated considerable excite-
ment across myriad scientific disciplines. For example, net-
works have been used to represent interactions between
proteins, friendships between people, hyperlinks between
Web pages, and much more. Importantly, several features
arise in a diverse variety of networks. For example, many
networks constructed from empirical data exhibit heavy-
tailed degree distributions, the small-world property, and/or
modular structures; such structural features can have impor-
tant implications for information diffusion, robustness against
component failure, and many other considerations [1–3].

Traditional studies of networks generally assume that
nodes are connected to each other by a single type of static
edge that encapsulates all connections between them. This
assumption is almost always a gross oversimplification,
and it can lead to misleading results and even the sheer
inability to address certain problems. For example, ignor-
ing time dependence throws away the ordering of pairwise
human contacts in transmission of diseases [4], and ignor-
ing the presence of multiple types of edges (which is
known as ‘‘multiplexity’’ [5]) makes it hard to take into
account the simultaneous presence and relevance of mul-
tiple modes of transportation or communication [6].
Multiplex networks explicitly incorporate multiple

channels of connectivity in a system, and they provide a
natural description for systems in which entities have a
different set of neighbors in each layer (which can repre-
sent, e.g., a task, an activity, or a category). A fundamental
aspect of describing multiplex networks is defining and
quantifying the interconnectivity between different catego-
ries of connections. Examining such interconnectivity is
necessary for examining switching between layers in a
multilayer system, and the associated interlayer connec-
tions in a network are responsible for the emergence of new

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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Network science helps us to better understand the evolu-
tion of the highly interconnected world in which we live1. 
It sheds light on myriad systems—everything from how 

rumours spread in a social network to how large ecosystems sta-
bilize in spite of competing interactions between species. A key 
feature shared by such systems is that they are characterized by a 
complex set of interactions that govern their emergent dynamics2–4. 
In recent years, the architecture of social networks, ecosystems and 
the human brain have all been modelled as graphs, with collections 
of nodes describing the units of the systems—humans, animals 
or neurons—and edges encoding their pairwise interactions. This 
approach has led to the discovery that a heavy-tailed distribution 
in the number of contacts within a population causes the epidemic 
threshold to vanish, putting everyone at risk during a pandemic5,6. 
It has inspired the realizations that small-world networks and clus-
tering promote synchronization7 and that efficient communication 
structures tend to reach rapid and diffused consensus, but are also 
prone to the spreading of misinformation8.

Graphs, however convenient, can only provide a limited descrip-
tion of reality. They are inherently constrained to represent systems 
with pairwise interactions only. Yet, in many biological, physical 
and social systems, units may interact in larger groups, and such 
interactions cannot always be decomposed as a linear combination 
of dyadic couplings9 (Fig. 1). For example, evidence from neural 
systems shows that higher-order effects are present and important 
both statistically10–12 and topologically13,14. However, there is also 

evidence to suggest that such higher-order signatures might in some 
cases be redundant, and may be fully describable in terms of pair-
wise interactions15,16. In ecological systems, evidence clearly shows 
the existence of complex many-body interactions between multiple 
species17–19, although the effects induced by their interaction pat-
terns have only recently been investigated formally20. Other exam-
ples include metabolic and genetic systems21, social coordination22 
and group formation23.

The idea of higher-order interactions is well-known in the set-
ting of many-body physics, for example in strong interactions24,25 
or van der Waals interactions26, as well as in statistical mechan-
ics27. However, in all these cases, representations of higher-order 
interactions are simple in the sense that they do not contribute 
to the emerging complexity of the problem. In complex systems, 
typically described as networks, the story is different, and in many 
cases these interactions must be taken into account using more 
advanced mathematical structures, such as hypergraphs and sim-
plicial complexes9. Several investigations have already shown that 
the presence of higher-order interactions may substantially impact 
the dynamics on networked systems, from diffusion28,29 and syn-
chronization30,31 to social32–34 and evolutionary processes35, possibly 
leading to the emergence of abrupt (explosive) transitions between 
states. Furthermore, although most research in complex systems 
focuses on the dynamical evolution of the states of the nodes, it 
is natural to consider that higher-order structures (described by 
hyperedges) could themselves possess a dynamical state, leading to 

The physics of higher-order interactions in 
complex systems
Federico Battiston1�ᅒ, Enrico Amico2,3, Alain Barrat! !4,5, Ginestra Bianconi! !6,7, 
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Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are 
intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order 
interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, 
are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight 
recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the phys-
ics of higher-order systems.
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WHAT ARE HIGHER-ORDER NETWORKS?⇤

CHRISTIAN BICK† , ELIZABETH GROSS‡ , HEATHER A. HARRINGTON§ , AND

MICHAEL T. SCHAUB¶

Abstract. Modeling complex systems and data using the language of graphs and networks
has become an essential topic across a range of di↵erent disciplines. Arguably, this network-based
perspective derives is success from the relative simplicity of graphs: A graph consists of nothing more
than a set of vertices and a set of edges, describing relationships between pairs of such vertices. This
simple combinatorial structure makes graphs interpretable and flexible modeling tools. The simplicity
of graphs as system models, however, has been scrutinized in the literature recently. Specifically, it
has been argued from a variety of di↵erent angles that there is a need for higher-order networks,
which go beyond the paradigm of modeling pairwise relationships, as encapsulated by graphs. In
this survey article we take stock of these recent developments. Our goals are to clarify (i) what
higher-order networks are, (ii) why these are interesting objects of study, and (iii) how they can be
used in applications.

Key words. networks, graphs, hypergraphs, simplicial complexes, topology, dynamics, statis-
tics, relational data, data analysis

AMS subject classifications. 05C82, 34B45, 68R10, 55U10, 05C65

1. Introduction. Networks provide natural abstractions for sets of discrete en-
tities that interact with one another or are related to one another. This has lead to a
surge of interest in networks and network dynamical systems as modeling tools for a
variety of systems, ranging from biological systems, such as gene regulatory networks,
to infrastructure systems, such as transportation networks [15, 202,256].

While the term network is often used synonymously with system in some fields,
mathematically, a network is a graph consisting of vertices (or nodes) and edges (or
links). Representing systems as graphs has been instrumental in gaining insights about
the structural and dynamical features of a system: Graph properties can be used to
determine important nodes [102, 114, 208], reveal modular structure of a system [99,
235], or—if each node is a dynamical unit—elucidate collective network dynamics
such as synchronization [255]. These ideas have been extended to weighted graphs,
signed graphs, directed graphs, and graphs with multiple edge or node types such as
multilayer or multiplex graphs. However, a limitation of any graph-based approach is
that all relationships are by definition dyadic or pairwise relationships, since edges in
a graph are binary relations. For instance, in network dynamics, dyadic interactions
are typically reflected in the equation of motion in form of additivity of interactions
corresponding to distinct edges.
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a b s t r a c t

The complexity of many biological, social and technological systems stems from the
richness of the interactions among their units. Over the past decades, a variety of
complex systems has been successfully described as networks whose interacting pairs of
nodes are connected by links. Yet, from human communications to chemical reactions
and ecological systems, interactions can often occur in groups of three or more nodes
and cannot be described simply in terms of dyads. Until recently little attention has
been devoted to the higher-order architecture of real complex systems. However, a
mounting body of evidence is showing that taking the higher-order structure of these
systems into account can enhance our modeling capacities and help us understand and
predict their dynamical behavior. Here we present a complete overview of the emerging
field of networks beyond pairwise interactions. We discuss how to represent higher-
order interactions and introduce the different frameworks used to describe higher-order
systems, highlighting the links between the existing concepts and representations. We
review the measures designed to characterize the structure of these systems and the
models proposed to generate synthetic structures, such as random and growing bipar-
tite graphs, hypergraphs and simplicial complexes. We introduce the rapidly growing
research on higher-order dynamical systems and dynamical topology, discussing the
relations between higher-order interactions and collective behavior. We focus in partic-
ular on new emergent phenomena characterizing dynamical processes, such as diffusion,
synchronization, spreading, social dynamics and games, when extended beyond pairwise
interactions. We conclude with a summary of empirical applications, and an outlook on
current modeling and conceptual frontiers.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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Two’s company, three (or more) is a simplex
Algebraic-topological tools for understanding higher-order structure in neural data
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Abstract The language of graph theory, or network sci-
ence, has proven to be an exceptional tool for addressing
myriad problems in neuroscience. Yet, the use of networks
is predicated on a critical simplifying assumption: that the
quintessential unit of interest in a brain is a dyad – two nodes
(neurons or brain regions) connected by an edge. While
rarely mentioned, this fundamental assumption inherently
limits the types of neural structure and function that graphs
can be used to model. Here, we describe a generalization
of graphs that overcomes these limitations, thereby offer-
ing a broad range of new possibilities in terms of modeling
and measuring neural phenomena. Specifically, we explore
the use of simplicial complexes: a structure developed in
the field of mathematics known as algebraic topology, of
increasing applicability to real data due to a rapidly growing
computational toolset. We review the underlying mathemat-
ical formalism as well as the budding literature applying
simplicial complexes to neural data, from electrophysiolog-
ical recordings in animal models to hemodynamic fluctua-
tions in humans. Based on the exceptional flexibility of the
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tools and recent ground-breaking insights into neural func-
tion, we posit that this framework has the potential to eclipse
graph theory in unraveling the fundamental mysteries of
cognition.

Keywords Networks · Topology · Simplicial complex ·
Filtration

The recent development of novel imaging techniques and
the acquisition of massive collections of neural data make
finding new approaches to understanding neural structure
a vital undertaking. Network science is rapidly becom-
ing an ubiquitous tool for understanding the structure of
complex neural systems. Encoding relationships between
objects of interest using graphs (Figs. 1a–b, 4a) enables the
use of a bevy of well-developed tools for structural charac-
terization as well as inference of dynamic behavior. Over
the last decade, network models have demonstrated broad
utility in uncovering fundamental architectural principles
(Bassett and Bullmore 2006; Bullmore and Bassett 2011)
and their implications for cognition (Medaglia et al. 2015)
and disease (Stam 2014). Their use has led to the devel-
opment of novel diagnostic biomarkers (Stam 2014) and
conceptual cognitive frameworks (Sporns 2014) that illus-
trate a paradigm shift in systems, cognitive, and clinical
neuroscience: namely, that brain function and alteration are
inherently networked phenomena.

All graph-based models consist of a choice of vertices,
which represent the objects of study, and a collection of
edges, which encode the existence of a relationship between
pairs of objects (Figs. 1a–b, 4a). However, in many real sys-
tems, such dyadic relationships fail to accurately capture
the rich nature of the system’s organization; indeed, even
when the underlying structure of a system is known to be

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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The Why, How, and When of
Representations for Complex Systems⇤

Leo Torres†

Ann S. Blevins‡

Danielle Bassett‡

Tina Eliassi-Rad†

Abstract. Complex systems, composed at the most basic level of units and their interactions, de-
scribe phenomena in a wide variety of domains, from neuroscience to computer science
and economics. The wide variety of applications has resulted in two key challenges: the
generation of many domain-specific strategies for complex systems analyses that are sel-
dom revisited, and the compartmentalization of representation and analysis ideas within a
domain due to inconsistency in complex systems language. In this work we propose basic,
domain-agnostic language in order to advance toward a more cohesive vocabulary. We use
this language to evaluate each step of the complex systems analysis pipeline, beginning
with the system under study and data collected, then moving through di↵erent mathe-
matical frameworks for encoding the observed data (i.e., graphs, simplicial complexes, and
hypergraphs), and relevant computational methods for each framework. At each step we
consider di↵erent types of dependencies; these are properties of the system that describe
how the existence of an interaction among a set of units in a system may a↵ect the pos-
sibility of the existence of another relation. We discuss how dependencies may arise and
how they may alter the interpretation of results or the entirety of the analysis pipeline.
We close with two real-world examples using coauthorship data and email communications
data that illustrate how the system under study, the dependencies therein, the research
question, and the choice of mathematical representation influence the results. We hope this
work can serve as an opportunity for reflection for experienced complex systems scientists,
as well as an introductory resource for new researchers.
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